Skip to main content
Log in

Bimetallic NiWO4 as an Efficient Interface Modulator for Pd Towards Enhanced Alcohol Electro-oxidation

  • Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The electronic coupling effect by interfacial engineering between noble metal and transition metal tungstates is considered an effective strategy for improving electrocatalytic activity. Herein we introduced a new hybrid electrocatalyst consisting of Pd nanoparticle supported on NiWO4 nanocrystals modified carbon for efficient alcohol electro-oxidation reaction. Bimetallic oxide resulted as an efficient interface modulator for Pd over mono metallic oxides. The synthesised catalyst, Pd over nickel tungstate modified Vulcan, exhibited well-dispersed homogeneous Pd particles. The catalytic effectiveness for the electro-oxidation of methanol and ethanol was found to be enhanced around ten times (1202.48 mA/mgPd) and six times (1508.24 mA/mgPd), respectively compared to Pd deposited over C catalyst. The enhanced electrochemical property owing to electronic modification and improved surface area, by the strong coupling of Pd with nickel tungstate and carbon support conferred excellent catalytic performance for the synthesised catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. X. Liang, B. Liu, J. Zhang, S. Lu, Z. Zhuang, Ternary Pd–Ni–P hybrid electrocatalysts derived from Pd–Ni core–shell nanoparticles with enhanced formic acid oxidation activity. Chem. Commun. 52, 11143–11146 (2016). https://doi.org/10.1039/C6CC04382H

    Article  CAS  Google Scholar 

  2. K. Nubla, T. Radhakrishnan, N. Sandhyarani, A graphitic carbon nitride–titania nanocomposite as a promising catalyst support for electro-oxidation of methanol. New J. Chem. 43, 3273–3279 (2019). https://doi.org/10.1039/C8NJ04772C

    Article  CAS  Google Scholar 

  3. Xiaoli Xing; Serhiy Cherevko; Chan-Hwa Chung, Porous Pd films as effective ethanol oxidation electrocatalysts in alkaline medium. Mater. Chem. Phys. 126, 36–40 (2011). https://doi.org/10.1016/j.matchemphys.2010.12.027

    Article  CAS  Google Scholar 

  4. Z. Ke, X. Zhiping, Li. Shumin, Y. Bo, Du. Wang Jin, Yukou., Cu 3 P/RGO promoted Pd catalysts for alcohol electro-oxidation. J. Alloys Compd. 706, 89–96 (2017). https://doi.org/10.1016/j.jallcom.2017.02.179

    Article  CAS  Google Scholar 

  5. C. Xuexue, Xu. Wang Xiaosong, Y.S. Xiaowei, W. Yi, One-step stabilizer-free synthesis of porous bimetallic PdCu nanofinger supported on graphene for highly efficient methanol electro-oxidation. Electrochim. Acta 260, 47–54 (2017). https://doi.org/10.1016/j.electacta.2017.11.054

    Article  CAS  Google Scholar 

  6. Y. Liu, S. Li, Y. Zhang, W. Liu, J. Wang, C. Zhai, Electrocatalytic oxidation of methanol on Pt-Pd nanoparticles supported on honeycomb-like porous carbons in alkaline media. J. Solid State Electrochem. 22, 817–824 (2018). https://doi.org/10.1007/s10008-017-3810-1

    Article  CAS  Google Scholar 

  7. H. Huang, X. Hu, J. Zhang, N. Su, J. Cheng, Facile fabrication of platinum-cobalt alloy nanoparticles with enhanced electrocatalytic activity for a methanol oxidation reaction. Sci. Rep. 7, 45555 (2017). https://doi.org/10.1038/srep45555

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  8. S.L. Madaswamy, R. Dhanusuraman, M. Alfakeer, A.A.A. Bahajjaj, M. Ouladsmane, S.M. Wabaidur, C. Chen, Remarkable electrocatalytic activity of Pd nanoparticles dispersed on polyaniline-polydiphenylamine copolymer nanocomposite for methanol and ethanol oxidation reaction. Synth. Met. 281, 116925 (2021). https://doi.org/10.1016/j.synthmet.2021.116925

    Article  CAS  Google Scholar 

  9. J. Zheng, D.A. Cullen, R.V. Forest, J.A. Wittkopf, Z. Zhuang, W. Sheng, J.G. Chen, Y. Yan, Platinum–ruthenium nanotubes and platinum–ruthenium coated copper nanowires as efficient catalysts for electro-oxidation of methanol. ACS Catal. 5, 1468–1474 (2015). https://doi.org/10.1021/cs501449y

    Article  CAS  Google Scholar 

  10. X. Guo, L. Yang, B. Shen, Y. Wei, Y. Yang, C. Yang, H. Huang, Ultrafine Pd nanocrystals anchored onto single-walled carbon nanohorns: A highly-efficient multifunctional electrocatalyst with ultra-low Pd loading for formic acid and methanol oxidation. Mater. Chem. Phys. 250, 123167 (2020). https://doi.org/10.1016/j.matchemphys.2020.123167

    Article  CAS  Google Scholar 

  11. S. Changshuai, W. Erkang, Recent progress in Pt and Pd-based hybrid nanocatalysts for methanol electrooxidation. Phys. Chem. Chem. Phys. 21, 21185–21199 (2019). https://doi.org/10.1039/C9CP03600H

    Article  Google Scholar 

  12. J. Sheng, J. Kang, H. Ye, J. Xie, Bo. Zhao, X. Fu, Y. Yu, R. Sun, C.P. Wong, Porous octahedral PdCu nanocages as high efficient electrocatalysts for methanol oxidation reaction. J. Mater. Chem. A 6, 3906–3912 (2018). https://doi.org/10.1039/C7TA07879J

    Article  CAS  Google Scholar 

  13. Y. Qian, Yu. Shi Lijie, B.X. Jun, W. Cong, W. Yawen, C. Hongyu, Facile synthesis of ultrathin Pt-Pd nanosheets for enhanced formic acid oxidation and oxygen reduction reaction. J. Mater. Chem. A. 7, 18846–18851 (2019). https://doi.org/10.1039/C9TA03945G

    Article  Google Scholar 

  14. T. Rozmanowski, P. Krawczyk, Influence of chemical exfoliation process on the activity of NiCl2 -FeCl3 -PdCl2 -graphite intercalation compound towards methanol electrooxidation. Appl. Catal. B Environ. 224, 53–59 (2017). https://doi.org/10.1016/j.apcatb.2017.10.024

    Article  CAS  Google Scholar 

  15. X.T. Yang, M.Z. Wen, X. Li, J.B. Wang, L.X. Su, X.D. Fan, Preparation of palladium/nickel hydroxides nanoflakes on carbon cloth support as robust anode catalyst for electrocatalytic alcohol oxidation. Mater. Chem. Phys. 242, 122552 (2020). https://doi.org/10.1016/j.matchemphys.2019.122552

    Article  CAS  Google Scholar 

  16. M.A.A. Mahmoud, Z. Aimei, N. Lina, D. Min, Z. Qiugen, L. Qinglin, Carbon supported PdSn nanocatalysts with enhanced performance for ethanol electrooxidation in alkaline medium. Int. J. Hydrogen Energy 44, 20368–20378 (2019). https://doi.org/10.1016/j.ijhydene.2019.06.013

    Article  CAS  Google Scholar 

  17. L.G. Bach, M.L.N. Thi, Q.B. Bui, H.-T. Nhac-Vu, Palladium sulfide nanoparticles attached MoS2/nitrogen-doped graphene heterostructures for efficient oxygen reduction reaction. Synth. Met. 254, 172–179 (2019). https://doi.org/10.1016/j.synthmet.2019.06.001

    Article  CAS  Google Scholar 

  18. G. Li, B. Shi, Y. Gong, Y. Zhang, X. Wang, M. Guo, X. Lyu, PdNi nanoparticles decorated on defective mesoporous carbon: An efficient bifunctional electrocatalysts in alkaline direct methanol fuel cells. Mater. Chem. Phys. 243, 122570 (2020). https://doi.org/10.1016/j.matchemphys.2019.122570

    Article  CAS  Google Scholar 

  19. K. Markus, J. Tilman, Z. Dirk, C. Carsten, Methanol oxidation reaction on core-shell structured Ruthenium-Palladium nanoparticles: Relationship between structure and electrochemical behavior. J. Power. Sources 375, 320–334 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.114

    Article  CAS  Google Scholar 

  20. J.C. Calderón, M.J. Nieto-Monge, S. Pérez-Rodríguez, J.I. Pardo, R. Moliner, M.J. Lázaro, Palladium–nickel catalysts supported on different chemically-treated carbon blacks for methanol oxidation in alkaline media. Int J Hydrogen Energy 4, 19556–19569 (2016). https://doi.org/10.1016/j.ijhydene.2016.07.121

    Article  CAS  Google Scholar 

  21. X. Jing, H. Guangting, Ye. Wanneng, S. Yutao, Li. Hongliang, G. Peizhi, Z. Xiusong, Structural regulation of PdCu nanoparticles and their electrocatalytic performance for ethanol oxidation. ACS Appl. Mater. Interfaces 8, 34497–34505 (2016). https://doi.org/10.1021/acsami.6b13368

    Article  CAS  Google Scholar 

  22. S.M. El-Sheikh, M.M. Rashad, Novel synthesis of cobalt nickel tungstate nanopowders and its photocatalytic application. J. Clust. Sci. 26, 743–757 (2015). https://doi.org/10.1007/s10876-014-0735-z

    Article  CAS  Google Scholar 

  23. Y.L. Oliveira, M.J.S. Costa, A.C.S. JucÃ, L.K.R. Silva, E. Longo, N.S. Arul, L.S. Cavalcante, Structural characterization, morphology, optical and colorimetric properties of NiWO4 crystals synthesized by the co-precipitation and polymeric precursor methods. J. Mol. Struct. 1221, 128774 (2020). https://doi.org/10.1016/j.molstruc.2020.128774

    Article  CAS  Google Scholar 

  24. M. Yang, C. Zheng, Q. Wang, C. Wang, J. Yin, L. Yang, O. Wang, X. Liu, G. Deng, Improvement of specific capacitance and rate performance of NiWO4 synthesized through modified chemical precipitation. J. Mater. Sci. Mater. Electron. 32, 12232–12240 (2021). https://doi.org/10.1007/s10854-021-05852-3

    Article  CAS  Google Scholar 

  25. S.M.M. Zawawi, R. Yahya, A. Hassan, H.N.M.E. Mahmud, M.N. Daud, Structural and optical characterization of metal tungstates (MWO4; M = Ni, Ba, Bi) synthesized by a sucrose-templated method. Chem. Central J. 7, 80–90 (2013). https://doi.org/10.1186/1752-153X-7-80

    Article  CAS  Google Scholar 

  26. H. Biao, W. Huayu, L. Shunfei, Q. Huizhen, Li. Yang, L. Ziyang, Z. Chenglan, X. Li, C. Lingyun, Two-dimensional porous cobaltâ “nickel tungstate thin sheets for high performance supercapattery. Energy Storage Mater. 32, 105–114 (2020). https://doi.org/10.1016/j.ensm.2020.07.014

    Article  Google Scholar 

  27. S. Mani, V. Vediyappan, S.M. Chen, R. Madhu, V. Pitchaimani, J.-Y. Chang, S.B. Liu, Hydrothermal synthesis of NiWO4 crystals for high performance non-enzymatic glucose biosensors. Sci. Rep. 6, 24128. (2016). https://doi.org/10.1038/srep24128

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  28. W. Ya, L. Gang, Reduced graphene oxide supported nickel tungstate nano-composite electrocatalyst for anodic urea oxidation reaction in direct urea fuel cell. Int. J. Hydrogen Energy 45, 33500–33511 (2020). https://doi.org/10.1016/j.ijhydene.2020.09.095

    Article  CAS  Google Scholar 

  29. Yu. Suwen Li, Y.H. Zhang, F. Lv, B. Liu, L. Huo, Bimetallic molybdenum-tungsten carbide/reduced graphene oxide hybrid promoted Pt catalyst with enhanced electrocatalytic activity and stability for direct methanol fuel cell. Appl. Surf. Sci. 600, 154134 (2022). https://doi.org/10.1016/j.apsusc.2022.154134

    Article  CAS  Google Scholar 

  30. L. Huang, X. Zheng, G. Gao, H. Zhang, K. Rong, J. Chen, Y. Liu, X. Zhu, W. Wu, Y. Wang, J. Wang, S. Dong, Interfacial electron engineering of palladium and molybdenum carbide for highly efficient oxygen reduction. J. Am. Chem. Soc. 143, 6933–6941 (2021). https://doi.org/10.1021/jacs.1c00656

    Article  PubMed  CAS  Google Scholar 

  31. Y. Wang, J. Su, L. Dong, P. Zhao, W. Wang, Y. Zhang, S. Jia, J. Zang, A novel hybrid of Ni and WC on new-diamond supported Pt electrocatalyst for methanol oxidation and oxygen reduction reactions. ChemCatChem 9, 3982–3988 (2017). https://doi.org/10.1002/cctc.201700866

    Article  CAS  Google Scholar 

  32. M.M. Mohamed, M. Khairy, S. Eid, Polyethylene glycol assisted one-pot hydrothermal synthesis of NiWO4 /WO3 heterojunction for direct Methanol fuel cells. Electrochim. Acta 263, 286–298 (2018). https://doi.org/10.1016/j.electacta.2018.01.063

    Article  CAS  Google Scholar 

  33. S. Supothina, P. Seeharaj, S. Yoriya, M. Sriyudthsak, Synthesis of tungsten oxide nanoparticles by acid precipitation method. Ceram. Int. 33, 931–936 (2007). https://doi.org/10.1016/j.ceramint.2006.02.007

    Article  CAS  Google Scholar 

  34. S. Fu, C. Zhu, D. Du, Y. Lin, Facile one-step synthesis of three-dimensional Pd–Ag bimetallic alloy networks and their electrocatalytic activity toward ethanol oxidation. ACS Appl. Mater. Interfaces 7, 13842–13848 (2015). https://doi.org/10.1021/acsami.5b01963

    Article  PubMed  CAS  Google Scholar 

  35. J. Tian, Y. Xue, X. Yu, Y. Pei, H. Zhang, J. Wang, Solvothermal synthesis of NiWO4 nanostructure and its application as a cathode material for asymmetric supercapacitors. RSC Adv. 8(73), 41740–41748 (2018). https://doi.org/10.1039/c8ra09128e

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  36. B. Senthilkumar, Z. Khan, S. Park, K. Kim, H. Ko, Y. Kim, Highly Porous Graphitic Carbon and Ni2 P2 O7 for high performance aqueous hybrid Supercapacitor. J. Mater. Chem. A 3, 21553–21561 (2015). https://doi.org/10.1039/C5TA04737D

    Article  CAS  Google Scholar 

  37. F.S. Omar, A. Numan, S. Bashir, N. Duraisamy, R. Vikneswaran, Y.L. Loo, K. Ramesh, S. Ramesh, Enhancing rate capability of amorphous nickel phosphate supercapattery electrode via composition with crystalline silver phosphate. Electrochim. Acta. 273, 216–228 (2018). https://doi.org/10.1016/j.electacta.2018.03.136

    Article  CAS  Google Scholar 

  38. Y. Lu, Y. Jiang, X. Gao, X. Wang, W. Chen, Strongly coupled Pd nanotetrahedron/tungsten oxide nanosheet hybrids with enhanced catalytic activity and stability as oxygen reduction electrocatalysts. J. Am. Chem. Soc. 136, 11687–11697 (2014). https://doi.org/10.1021/ja5041094

    Article  PubMed  CAS  Google Scholar 

  39. Ermete Antolini Composite materials, An emerging class of fuel cell catalyst supports. Appl. Catal. B Environ. 100, 413–426 (2010). https://doi.org/10.1016/j.apcatb.2010.08.025

    Article  CAS  Google Scholar 

  40. Z.Y. Shih, C.W. Wang, G. Xu, H.T. Chang, Porous palladium copper nanoparticles for the electrocatalytic oxidation of methanol in direct methanol fuel cells. J. Mater. Chem. A. 1, 4773. (2013). https://doi.org/10.1039/C3TA01664A

    Article  CAS  Google Scholar 

  41. M. Soleimani-Lashkenari, S. Rezaei, J. Fallah, Rostami, Hussein Electrocatalytic performance of Pd/PANI/TiO2 nanocomposites for methanol electrooxidation in alkaline media. Synth. Met. 235, 71–79 (2018). https://doi.org/10.1016/j.synthmet.2017.12.001

    Article  CAS  Google Scholar 

  42. K.R. Lee, D. Yun, D.S. Park, Y.S. Yun, C.K. Song, Y. Kim, J. Park, J. Yi, In situ manipulation of the d-band center in metals for catalytic activity in CO oxidation. Chem. Commun. 57, 3403 (2021). https://doi.org/10.1039/D0CC06979E

    Article  CAS  Google Scholar 

  43. S.M.A. Shibli, V.R. Anupama, P.S. Arun, P. Jineesh, L. Suji, Synthesis and development of nano WO3 catalyst incorporated Ni–P coating for electrocatalytic hydrogen evolution reaction. Int. J. Hydrogen Energy 41, 10090–10102 (2016). https://doi.org/10.1016/j.ijhydene.2016.04.156

    Article  CAS  Google Scholar 

  44. K.P. Kepp, A quantitative scale of oxophilicity and thiophilicity. Inorg. Chem. 55, 9461–9470 (2016). https://doi.org/10.1021/acs.inorgchem.6b01702

    Article  PubMed  CAS  Google Scholar 

  45. R. Kottayintavida, N.K. Gopalan, Nickel phosphate modified carbon supported Pd catalyst for enhanced alcohol electro oxidation. Int. J. Hydrogen Energy 45, 11116–11126 (2020). https://doi.org/10.1016/j.ijhydene.2020.02.050

    Article  CAS  Google Scholar 

  46. Lu. Yanchun Zhao, J.T. Zhan, S. Nie, Z. Ning, Enhanced electro catalytic oxidation of methanol on Pd/polypyrrole–grapheme in alkaline medium. Electrochim. Acta 56, 1967–1972 (2011). https://doi.org/10.1016/j.electacta.2010.12.005

    Article  CAS  Google Scholar 

  47. N. Kakati, J. Maiti, S.H. Lee, Y.S. Yoon, Core shell like behavior of PdMo nanoparticles on multiwall carbon nanotubes and their methanol oxidation activity in alkaline medium. Int. J. Hydrogen Energy 37, 19055–19064 (2012). https://doi.org/10.1016/j.ijhydene.2012.09.083

    Article  CAS  Google Scholar 

  48. Y. Zhao, L. Zhan, J. Tian, S. Nie, Z. Ning, MnO2 modified multi-walled carbon nanotubes supported Pd nanoparticles for methanol electro-oxidation in alkaline media. Int. J. Hydrogen Energy 35, 10522–11052 (2010). https://doi.org/10.1016/j.ijhydene.2010.07.048

    Article  CAS  Google Scholar 

  49. F. Fathirad, A. Mostafavi, D. Afzali, Bimetallic Pd–Mo nanoalloys supported on Vulcan XC-72R carbon as anode catalysts for direct alcohol fuel cell. Int. J. Hydrogen Energy 42, 3215–3221 (2017). https://doi.org/10.1016/j.ijhydene.2016.09.138

    Article  CAS  Google Scholar 

  50. M. Satyanarayana, G. Rajeshkhanna, M.K. Sahoo, G.R. Rao, Electrocatalytic activity of Pd20−xAgx nanoparticles embedded in carbon nanotubes for methanol oxidation in alkaline media. ACS Appl. Energy Mater. 1, 3763–3770 (2018). https://doi.org/10.1021/acsaem.8b00544

    Article  CAS  Google Scholar 

  51. H. Mao, T. Huang, A. Yu, Surface Palladium rich CuxPdy/carbon catalysts for methanol and ethanol oxidation in alkaline media. Electrochim. Acta 174, 1–7 (2015). https://doi.org/10.1016/j.electacta.2015.05.160

    Article  CAS  Google Scholar 

  52. A. Caglar, H. Kivrak, Highly active carbon nanotube supported PdAu alloy catalysts for ethanol electrooxidation in alkaline environment. Int. J. Hydrogen Energy 44, 11734–11743 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.118

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Roshima K acknowledges CSIR, New Delhi for the award of Senior Research Fellowship. We thank Mr. Kiran Mohan for TEM and Mr. Peer Mohamed for XPS analysis.

Funding

Financial support from Science and Engineering Research Board (SERB), EEQ/2021/000848.

Author information

Authors and Affiliations

Authors

Contributions

R K: Synthesized the catalysts samples, performed the analysis and co-wrote the manuscript. D G: co-wrote the manuscript. N K G: Designed and guided the project, analyzed the data and co-wrote the paper.

Corresponding author

Correspondence to Nishanth Karimbintherikkal Gopalan.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kottayintavida, R., Ganguly, D. & Gopalan, N.K. Bimetallic NiWO4 as an Efficient Interface Modulator for Pd Towards Enhanced Alcohol Electro-oxidation. Electrocatalysis (2024). https://doi.org/10.1007/s12678-024-00863-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12678-024-00863-0

Keywords

Navigation