Skip to main content
Log in

Electrodeposited Pd Nanoparticles onto Fe3O4-S-rGO for Methanol Electro-oxidation

  • Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

A series of Pd/Fe3O4@S-rGO was synthesized under various deposition times of Pd and their catalytic activity was investigated in alkaline media via chronoamperometry (CA), cyclic voltammetry (CVs), and electrochemical impedance spectroscopy (EIS) for the methanol oxidation reaction. For the S source, sodium dodecylbenzene sulfonate (SDBS) was used to obtain ultrafine Fe3O4 particles and enhance the graphene layer properties. Through the characterization measurements, it is concluded that Pd was deposited successfully onto Fe3O4@S-rGO (S and Fe3O4 dual-doped reduced graphene oxide) with nanoscale cubic lattice nanostructure. In the presence of Fe3O4, the band gap of Pd450/ITO decreased from 3.46 to 1.74 eV. The band gap of fabricated catalyzes changed with the deposition time of Pd. In addition, the synergistic effect between Pd and Fe3O4 enhances the catalytic activity of the electrode toward methanol oxidation when compared bulk Pd electrode. The Pd450/Fe3O4@S-rGO electrocatalyst showed a current density of 22.3 mA cm−2 at a scan rate of 30 mV s−1 with remarkable long-term stability in 0.5 M methanol in 1 M NaOH. This value is 2.2 times higher than the Pt/C (10 mAcm−2) catalyst under the same conditions. With modifying Fe3O4 the Tafel slope of Pd450/ITO decreased from 180 to 118 mVdec−1.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. J. Zhu, L. Xia, R. Yu, R. Lu, J. Li, R. He, Y. Wu, W. Zhang, X. Hong, W. Chen, Y. Zhao, L. Zhou, L. Mai, Z. Wang, J. Am. Chem. Soc. 144, 15529 (2022)

    Article  CAS  PubMed  Google Scholar 

  2. T.H. Chiang, J.W. Hsu, Catalysts 12, 676 (2022)

    Article  CAS  Google Scholar 

  3. A. Maksic, Z. Rakocevic, M. Smiljanic, M. Nenadovic, S. Strbac, J. Power. Sources 273, 724 (2015)

    Article  CAS  Google Scholar 

  4. J. Meng, J. Shu, J. Zhao, L. Wu, R. Jin, H. Yang, S. Li, J. Colloid Interface Sci. 647, 438–445 (2023)

    Article  CAS  PubMed  Google Scholar 

  5. W. Li, X. Wen, X. Wang, J. Li, E. Ren, Z. Shi, C. Liu, D. Mo, S. Mo, Molecular Catalysis 514, 111847 (2021)

    Article  CAS  Google Scholar 

  6. W. Li, Z. Song, X. Deng, X.-Z. Fu, J.-L. Luo, Electrochim. Acta 337, 135684 (2020)

    Article  CAS  Google Scholar 

  7. Y. Cao, J. Ge, M. Jiang, F. Zhang, X. Lei, A.C.S. Appl, Mater. Interfaces 13, 29491–29499 (2021)

    Article  CAS  Google Scholar 

  8. B. Bawab, S.M. Thalluri, J. Rodriguez-Pereira, H. Sopha, R. Zazpe, J.M. Macak, Electrochim. Acta 429, 141044 (2022)

    Article  CAS  Google Scholar 

  9. Y. Ren, S. Zhang, H. Li, Int. J. Hydrogen Energy 39, 288 (2014)

    Article  CAS  Google Scholar 

  10. M.T.T. Moghadam, M. Seifi, M.B. Askari, S. Azizi, J. Phys. Chem. Solids 165, 110688 (2022)

    Article  Google Scholar 

  11. J. Li, J. Ren, G. Yang, P. Wang, H. Li, X. Sun, L. Chen, J. T. Ma, R. Li, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 172, 207 (2010)

  12. Z. Zhang, C. Zhang, J. Sun, T. Kou, Q. Bai, Y. Wang, Y. Ding, J. Mater. Chem. A 1, 3620 (2013)

    Article  CAS  Google Scholar 

  13. S. Kaplan, R. Suna Karateki̇n, M. Kahya Dudukcu, G. Avcı, Mater. Chem. Phys. 294, 127051 (2023)

  14. W. Chen, H. Xiao, L. Hou, X. Xu, L. Kong, X. Zhou, Z. Liu, Mater. Sci. Eng. B 297, 116724 (2023)

    Article  CAS  Google Scholar 

  15. D.B. Kayan, T. Baran, A. Mentes, Electrochim. Acta 422, 140513 (2022)

    Article  CAS  Google Scholar 

  16. S. Ma, Z. Tang, Y. Fan, J. Zhao, X. Meng, N. Yang, S. Zhuo, S. Liu, Carbon 152, 144–150 (2019)

    Article  CAS  Google Scholar 

  17. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  CAS  Google Scholar 

  18. E. Turunc, R. Binzet, I. Gumus, G. Binzet, H. Arslan, Mater. Chem. Phys. 202, 310 (2017)

    Article  CAS  Google Scholar 

  19. T. Kamakshi, G.S. Sundari, H. Erothu, R.S. Singh, Rasayan J. Chem. 12, 531 (2019)

    Article  CAS  Google Scholar 

  20. N.K. Yetim, F.K. Baysak, M.M. Koç, D. Nartop, J. Mater. Sci. Mater. Electron. 31, 1003 (2020)

    Article  Google Scholar 

  21. X.W. Zhou, Y.L. Gan, Z.X. Dai, R.H. Zhang, J. Electroanal. Chem. 685, 97 (2012)

    Article  CAS  Google Scholar 

  22. R. Hatel, S. El Majdoub, A. Bakour, M. Khenfouch, M. Baitoul, Journal of Physics: Conf. Series 1081, 012006 (2018)

    Google Scholar 

  23. G.T.S. How, A. Pandikumar, H.N. Ming, L.H. Ngee, Sci. Rep. 4, 2 (2014)

    Article  Google Scholar 

  24. M.A. Kamyabi, S. Jadali, Mater. Chem. Phys. 257, 123626 (2021)

    Article  CAS  Google Scholar 

  25. T. Karazehir, Int. J. Hydrogen Energy 48, 10493 (2023)

    Article  CAS  Google Scholar 

  26. K. Promsuwan, A. Soleh, K. Saisahas, J. Saichanapan, A. Thiangchanya, A. Phonchai, W. Limbut, Microchem. J. 171, (2021)

  27. X. Li, J. Paier, J. Phys. Chem. C 123, 8429–8438 (2019)

    Article  CAS  Google Scholar 

  28. M. Eswaran, R. Dhanusuraman, P.C. Tsai, V.K. Ponnusamy, Fuel 251, 91–97 (2019)

    Article  CAS  Google Scholar 

  29. S.L. Madaswamy, N.V. Keertheeswari, A.A. Alothman, M.A. Anazy, K.N. Alqahtani, S.M. Wabaidur, R. Dhanusuraman, Advanced Industrial and Engineering Polymer Research 5, 18–25 (2022)

    Article  CAS  Google Scholar 

  30. M. F. R.Hanifah, J. Jaafar, M. H. D. Othman, N. Yusof, M. A. Rahman, W. N. W. Salleh, A. F. Ismail, F. Aziz, G. Ur Rehman, Journal of Physics and Chemistry of Solids 148, 109718 (2021)

  31. R.S. Karatekin, D. Kaya, S. Kaplan, M.K. Düdükcü, J. Nanoparticle Res. 24, 233 (2022)

    Article  CAS  Google Scholar 

  32. N. Garino, J. Zeng, M. Castellino, A. Sacco, F. Risplendi, M.R. Fiorentin, K. Bejtka, A. Chiodoni, D. Salomon, J. Segura-Ruiz, C.F. Pirri, G. Cicero, Npj 2D Mater. Appl. 5, 1 (2021)

    Google Scholar 

  33. Y. Zhang, Q. Cao, F. Zhu, H. Xu, Y. Zhang, W. Xu, X. Liao, Int. J. Electrochem. Sci. 15, 8771 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R.S. Karatekin: supervision, writing—review and editing, conceptualization, software, methodology, and original draft preparation. S. Kaplan: investigation and data curation.

Corresponding author

Correspondence to Rukan Suna Karatekin.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethical Approval

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suna Karatekin, R., Kaplan, S. Electrodeposited Pd Nanoparticles onto Fe3O4-S-rGO for Methanol Electro-oxidation. Electrocatalysis 14, 901–911 (2023). https://doi.org/10.1007/s12678-023-00845-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-023-00845-8

Keywords

Navigation