Skip to main content

Advertisement

Log in

Dandelion-like P-Doped Fe-Co-Se Grown on Carbon Cloths for Enhanced Electrocatalytic Oxygen Evolution

  • Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

As a representative anodic reaction, the oxygen evolution reaction (OER) is often combined with hydrogen evolution, carbon dioxide reduction, and other cathodic reactions. Bimetallic selenides can satisfy the requirement of efficiency and economy for OER. However, the OER performance of Fe-Co-Se is less than satisfactory, restricted by the limited inherent active sites. Therefore, by doping P into Fe-Co-Se, the electron density and mass transfer were successfully adjusted. The 3D dandelion-like flower Fe-Co-Se-P/CC showed η10 of 210 mV and the 45.3 mV dec−1 Tafel slope better than Fe-Co-Se/CC and RuO2. Experimental investigations demonstrated that outstanding OER activity was ascribed to the double modulation influences of P dopant both in electron environment and morphology which could not only improve conductivity but also enrich catalytic reactive sites. This work presents another choice for the design of a transition metal OER catalyzer and propels the development of electrocatalytic oxygen production to higher efficiency and lower cost.

Graphical Abstract

3D dandelion-like flowers Fe-Co-Se-P structure anchored on carbon cloth has been firstly synthesized as economy and efficient OER electrocatalyst, which displays outstanding catalytic perform ance (equipped with 210 mV low overpotential at η10) and stability benefited from the double modulation effect of P doping on the electronic environment and morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The supporting information is available free of charge at https://pubs.acs.org/doi/.

References

  1. Y. Wang, X.B. Zheng, D.S. Wang, Design concept for electrocatalysts. Nano Res. 15, 1730–1752 (2022)

    Article  CAS  Google Scholar 

  2. F.A. Soudens, S. Karels, C. Felix, S. Pasupathi, Development of unsupported Ru and Ni based oxides with enhanced performance for the oxygen evolution reaction in acidic media. Electrocatalysis 14, 437–447 (2023)

    Article  CAS  Google Scholar 

  3. E.A. Jaouhari, A. Slassi, B.W. Zhang, W. Liu, D. Cornil, J.H. Zhu, X.R. Wu, D.Y. Zhou, X.H. Liu, Enhancement of oxygen evolution reaction by X-doped (X = Se, S, P) holey graphitic carbon shell encapsulating NiCoFe nanoparticles: A combined experimental and theoretical study. Mater. Today Chem. 23 (2022)

  4. Y. Xiong, P. He, A review on electrocatalysis for alkaline oxygen evolution reaction (OER) by Fe-based catalysts. J. Mater. Sci. 58, 2041–2067 (2023)

    CAS  Google Scholar 

  5. Z.C. Xu, J.M. Wang, J.J. Cai, Y.T. He, J. Hu, H.J. Li, Y.T. Li, Y. Zhou, Electrochemical deposited amorphous bimetallic nickle-iron (oxy)hydroxides electrocatalysts for highly efficient oxygen evolution reaction. Electrocatalysis 14, 429–436 (2022)

    Article  Google Scholar 

  6. Y. Huang, L.W. Jiang, X.L. Liu, T. Tan, H. Liu, J.J. Wang, Precisely engineering the electronic structure of active sites boosts the activity of iron-nickel selenide on nickel foam for highly efficient and stable overall water splitting. Appl. Catal. B Environ. 299, 120678 (2021)

    Article  CAS  Google Scholar 

  7. A. Sathyaseelan, D. Kesavan, S. Manoharan, V.K. Mariappan, K. Krishnamoorthy, S.-J. Kim, Thermoelectric driven self-powered water electrolyzer using nanostructured CuFeS2 plates as bifunctional electrocatalyst. ACS Appl. Energy Mater. 4, 7020–7029 (2021)

    Article  CAS  Google Scholar 

  8. M.Z. Gu, X.Y. Deng, M. Lin, H. Wang, A. Gao, X.M. Huang, X.J. Zhang, Ultrathin NiCo bimetallic molybdate nanosheets coated CuOx nanotubes: Heterostructure and bimetallic synergistic optimization of the active site for highly efficient overall water splitting. Adv. Energy Mater. 11, 2102361 (2021)

    Article  CAS  Google Scholar 

  9. J.X. Feng, L.X. Ding, S.H. Ye, X.J. He, H. Xu, Y.X. Tong, G.R. Li, Co(OH)2@PANI hybrid nanosheets with 3D networks as high-performance electrocatalysts for hydrogen evolution reaction. Adv. Mater. 31, 1904101 (2019)

    Article  CAS  Google Scholar 

  10. W.F. Chen, J.T. Muckerman, E. Fujita, Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 49, 8896–8909 (2013)

    Article  CAS  Google Scholar 

  11. C.C. Weng, J.T. Ren, Z.Y. Yuan, A review of phosphide-based materials for electrocatalytic hydrogen evolution. Adv. Energy Mater. 5, 1500985 (2020)

    Google Scholar 

  12. B. Yu, F. Qi, Y.F. Chen, X.Q. Wang, B.J. Zheng, W.L. Zhang, Y.R. Li, L.C. Zhang, Nanocrystalline Co0.85Se anchored on graphene nanosheets as a highly efficient and stable electrocatalyst for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 9, 30703–30710 (2017)

    Article  CAS  PubMed  Google Scholar 

  13. B. Yu, F. Qi, B.J. Zheng, W.Q. Hou, W.L. Zhang, Y.R. Li, Y.F. Chen, Self-assembled pearl-bracelet-like CoSe2-SnSe2/CNT hollow architecture as highly efficient electrocatalysts for hydrogen evolution reaction. J. Mater. Chem. A 6, 1655–1662 (2018)

    Article  CAS  Google Scholar 

  14. J.H. Chen, Y.F. Zhang, H.Q. Ye, J.Q. Xie, Y.M. Li, C.Z. Yan, R. Sun, C.P. Wong, Metal-organic framework-derived CoxFe1-xP nanoparticles encapsulated in N-doped carbon as efficient bifunctional electrocatalysts for overall water splitting. ACS Appl. Energy Mater. 2, 2734–2742 (2019)

    Article  CAS  Google Scholar 

  15. Y.Q. Yang, W.B. Zhang, Y.L. Xiao, Z.P. Shi, X.M. Cao, Y. Tang, Q.S. Gao, CoNiSe2 heteronanorods decorated with layered-double-hydroxides for efficient hydrogen evolution. Appl. Catal. B Environ. 242, 132–139 (2019)

    Article  CAS  Google Scholar 

  16. B.J. Rani, G. Ravi, R. Yuvakkumar, B. Saravanakumar, M. Thambidurai, C. Dang, D. Velauthapillai, CoNiSe2 nanostructures for clean energy production. ACS Omega 5, 14702–14710 (2020)

    Article  Google Scholar 

  17. X. Peng, Y.J. Yan, X. Jin, C. Huang, W.H. Jin, B. Gao, P.K. Chu, Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 78, 105234 (2020)

    Article  CAS  Google Scholar 

  18. S.L. Zhao, M. Li, M. Han, D.D. Xu, J. Yang, Y. Lin, N.E. Shi, Y.N. Lu, R. Yang, B.T. Liu, Z.H. Dai, J.C. Bao, Defect-rich Ni3FeN nanocrystals anchored on N-doped graphene for enhanced electrocatalytic oxygen evolution. Adv. Funct. Mater. 28, 1706018 (2018)

    Article  Google Scholar 

  19. D. Friebel, M.W. Louie, M. Bajdich, K.E. Sanwald, Y. Cai, A.M. Wise, M.J. Cheng, D. Sokaras, T.C. Weng, R. Alonso-Mori, R.C. Davis, J.R. Bargar, J.K. Norskov, A. Nilsson, A.T. Bell, Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305–1313 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. G.X. Zhu, X.L. Xie, X.Y. Li, Y.J. Liu, X.P. Shen, K.Q. Xu, S.W. Chen, Nanocomposites based on CoSe2-decorated FeSe2 nanoparticles supported on reduced graphene oxide as high-performance electrocatalysts toward oxygen evolution reaction. ACS Appl. Mater. Interfaces 10, 19258–19270 (2018)

    Article  CAS  PubMed  Google Scholar 

  21. H.N. Ren, L.X. Yu, L.P. Yang, Z.H. Huang, F.Y. Kang, R.T. Lv, Efficient electrocatalytic overall water splitting and structural evolution of cobalt iron selenide by one-step electrodeposition. J. Energy Chem. 60, 194–201 (2021)

    Article  CAS  Google Scholar 

  22. Y. Sang, G. Ding, Z. Guo, Y. Xue, G. Li, R. Zhang, Facile synthesis of amorphous bimetallic hydroxide on Fe-doped Ni3S2 as an active electrocatalyst for oxygen evolution reaction. J. Alloys. Compd. 919, 165855 (2022)

    Article  CAS  Google Scholar 

  23. R. Bose, K. Karuppasamy, P. Arunkumar, G.K. Veerasubramani, S. Gayathri, P. Santhoshkumar, D. Vikraman, J.H. Han, H.S. Kim, A. Alfantazi, Self-supportive bimetallic selenide heteronanostructures as high-efficiency electro(pre)catalysts for water oxidation. ACS Sustain. Chem. Eng. 9, 13114–13123 (2021)

    Article  CAS  Google Scholar 

  24. Q. Li, X.B. Hu, L.D. Zhang, S.Y. Li, J.Y. Chen, B.Y. Zhang, Z.Y. Zheng, H.Y. He, J. Zhang, S.P. Luo, A.J. Xie, CuCo-MOF/MoS2 as a high-performance electrocatalyst for oxygen evolution reaction. Electrocatalysis 14, 333–340 (2023)

    Article  CAS  Google Scholar 

  25. W. Liu, H. Liu, L.N. Dang, H.X. Zhang, X.L. Wu, B. Yang, Z.J. Li, X.W. Zhang, L.C. Lei, S. Jin, Amorphous cobalt-iron hydroxide nanosheet electrocatalyst for efficient electrochemical and photo-electrochemical oxygen evolution. Adv. Funct. Mater. 27, 1603904 (2017)

    Article  Google Scholar 

  26. B.Q. Li, S.Y. Zhang, C. Tang, X.Y. Cui, Q. Zhang, Anionic regulated NiFe (Oxy)sulfide electrocatalysts for water oxidation. Small 13, 1700610 (2017)

    Article  Google Scholar 

  27. S.S. Li, L. Wang, H. Su, A.N. Hong, Y.X. Wang, H.J. Yang, L. Ge, W.Y. Song, J. Liu, T.Y. Ma, X.H. Bu, P.Y. Feng, Electron redistributed S-doped nickel iron phosphides derived from one-step phosphatization of MOFs for significantly boosting electrochemical water splitting. Adv. Funct. Mater. 32, 2200733 (2022)

    Article  CAS  Google Scholar 

  28. C. Huang, C.R. Pi, X.M. Zhang, K. Ding, P. Qin, J.J. Fu, X. Peng, B. Gao, P.K. Chu, K.F. Huo, In situ synthesis of MoP nanoflakes intercalated N-doped graphene nanobelts from MoO3-amine hybrid for high-efficient hydrogen evolution reaction. Small 14, 1800667 (2018)

    Article  Google Scholar 

  29. B.W. Zhou, J.W. Li, X. Zhang, J.X. Guo, Engineering P-doped Ni3S2-NiS hybrid nanorod arrays for efficient overall water electrolysis. J. Alloys Compd. 862, 158391 (2021)

    Article  CAS  Google Scholar 

  30. Y. Wang, B. Kong, D.Y. Zhao, H.T. Wang, C. Selomulya, Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today 15, 26–55 (2017)

    Article  CAS  Google Scholar 

  31. C.Z. Zhu, H.B. Liu, Y.C. Song, J.J. Wang, Y.M. Zhou, Y.W. Zhang, Sea urchin-like CoS2@WS2/NF bifunctional catalyst for efficient overall water splitting. Electrocatalysis 14, 341–352 (2023)

    Article  CAS  Google Scholar 

  32. G.Y. Ma, X.Q. Du, X.S. Zhang, Flower-like Fe-Co-M (M=S, O, P and Se) nanosheet arrays grown on nickel foam as high-efficiency bifunctional electrocatalysts. Chem. Asian J. 16, 959–965 (2021)

    Article  CAS  PubMed  Google Scholar 

  33. L.Q. Wang, Z.L. Han, Q.Q. Zhao, X.Y. Yao, Y.Q. Zhu, X.L. Ma, S. Wu, C.B. Cao, Engineering yolk-shell P-doped NiS2/C spheres via a MOF-template for high-performance sodium-ion batteries. J. Mater. Chem. A 8, 8612–8619 (2020)

    Article  CAS  Google Scholar 

  34. J. Ma, Y. Wang, L. Zhou, S. Zhang, Preparation and characterization of selenite substituted hydroxyapatite. Biomater. Adv. 33, 440–445 (2012)

    Google Scholar 

  35. Y. Huang, L.W. Jiang, B.Y. Shi, K.M. Ryan, J.J. Wang, Highly efficient oxygen evolution reaction enabled by phosphorus doping of the Fe electronic structure in iron-nickel selenide nanosheets. Adv. Sci. 8, 2101775 (2021)

    Article  CAS  Google Scholar 

  36. Y.B. Lian, H. Sun, X.B. Wang, P.W. Qi, Q.Q. Mu, Y.J. Chen, J. Ye, X.H. Zhao, Z. Deng, Y. Peng, Carved nanoframes of cobalt-iron bimetal phosphide as a bifunctional electrocatalyst for efficient overall water splitting. Chem. Sci. 10, 464–474 (2019)

    Article  CAS  PubMed  Google Scholar 

  37. Q.H. Liang, L.X. Zhong, C.F. Du, Y. Zheng, Y.B. Luo, J.W. Xu, S.Z. Li, Q.Y. Yan, Mosaic-structured cobalt nickel thiophosphate nanosheets incorporated N-doped carbon for efficient and stable electrocatalytic water splitting. Adv. Funct. Mater. 28, 1805075 (2018)

    Article  Google Scholar 

  38. R. Bose, V.R. Jothi, D.B. Velusamy, P. Arunkumar, S.C. Yi, A highly effective, stable oxygen evolution catalyst derived from transition metal selenides and phosphides. Part. Part. Syst. Charact. 35, 1800135 (2018)

    Article  Google Scholar 

  39. X.F. Lu, L.F. Gu, J.W. Wang, J.X. Wu, P.Q. Liao, G.R. Li, Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv. Mater. 29, 1604437 (2017)

    Article  Google Scholar 

  40. W.H. Wang, L. Kuai, W. Cao, M. Huttula, S. Ollikkala, T. Ahopelto, A.P. Honkanen, S. Huotari, M.K. Yu, B.Y. Geng, Mass-production of mesoporous MnCo2O4 spinels with manganese(IV)- and cobalt(II)-rich surfaces for superior bifunctional oxygen electrocatalysis. Angew. Chem. Int. Ed. 56, 14977–14981 (2017)

    Article  CAS  Google Scholar 

  41. Z. Cai, Y.M. Bi, E.Y. Hu, W. Liu, N. Dwarica, Y. Tian, X.L. Li, Y. Kuang, Y.P. Li, X.Q. Yang, H.L. Wang, X.M. Sun, Single-crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis. Adv. Energy Mater. 8, 1701694 (2018)

    Article  Google Scholar 

  42. H. Zhang, T.T. Wang, A. Sumboja, W.J. Zang, J.P. Xie, D.Q. Gao, S.J. Pennycook, Z.L. Liu, C. Guan, J. Wang, Integrated hierarchical carbon flake arrays with hollow P-doped CoSe2 nanoclusters as an advanced bifunctional catalyst for Zn-air batteries. Adv. Funct. Mater. 28, 1804846 (2018)

    Article  Google Scholar 

  43. L. Yan, B. Zhang, J.L. Zhu, Z.G. Liu, H.Y. Zhang, Y.Y. Li, Callistemon-like Zn and S codoped CoP nanorod clusters as highly efficient electrocatalysts for neutral-pH overall water splitting. J. Mater. Chem. A 7, 22453–22462 (2019)

    Article  CAS  Google Scholar 

  44. D. Li, C.J. Zhou, R. Yang, Y.Y. Xing, S.J. Xu, D.L. Jiang, D. Tian, W.D. Shi, Interfacial engineering of the CoxP-Fe2P heterostructure for efficient and robust electrochemical overall water splitting. ACS Sustainable Chem. Eng. 9, 7737–7748 (2021)

    Article  CAS  Google Scholar 

  45. J.Y. Xia, C. Li, Y.Y. Gong, L.Y. Niu, M.G. Chen, S.Q. Xu, Designing of highly-efficient oxygen evolution reaction electrocatalyst FeCo-hydroxyl phosphates: Theory and experiment. Chem. Eng. J. 446 (2022)

  46. J. Joo, T. Kim, J. Lee, S.I. Choi, K. Lee, Morphology-controlled metal sulfides and phosphides for electrochemical water splitting. Adv. Mater. 31, 1806682 (2019)

    Article  Google Scholar 

  47. O.A. Petrii, R.R. Nazmutdinov, M.D. Bronshtein, G.A. Tsirlina, Life of the Tafel equation: Current understanding and prospects for the second century. Electrochim. Acta 52, 3493–3504 (2007)

    Article  CAS  Google Scholar 

  48. A. Holewinski, S. Linic, Elementary mechanisms in electrocatalysis: Revisiting the ORR Tafel slope. J. Electrochem. Soc. 159, H864–H870 (2012)

    Article  CAS  Google Scholar 

  49. S. Gayathri, P. Arunkumar, R. Bose, A. Alfantazi, J.H. Han, A hexagonal 2D ZIF-Co-L variant: Unusual role of graphene oxide on the water-regulated morphology of ZIF hybrid and their derived Co@N-doped carbon electrocatalyst for hydrogen evolution reaction. Chem. Eng. J. 426 (2021)

  50. Y. Li, Z.H. Dong, L.F. Jiao, Multifunctional transition metal-based phosphides in energy-related electrocatalysis. Adv. Energy Mater. 10, 1902104 (2019)

    Article  Google Scholar 

  51. Y.M. Xin, T.L. Gao, J. Xu, J.Y. Zhang, D.F. Wu, Transient electrically driven stiffness-changing materials from liquid metal polymer composites. ACS Appl. Mater. Interfaces 13, 50392–50400 (2021)

    Article  CAS  PubMed  Google Scholar 

  52. R. Bose, V.R. Jothi, K. Karuppasamy, A. Alfantazi, S.C. Yi, High performance multicomponent bifunctional catalysts for overall water splitting. J. Mater. Chem. A 8, 13795–13805 (2020)

    Article  CAS  Google Scholar 

  53. J. Ryu, N. Jung, J.H. Jang, H.J. Kim, S.J. Yoo, In situ transformation of hydrogen-evolving CoP nanoparticles: Toward efficient oxygen evolution catalysts bearing dispersed morphologies with Co-oxo/hydroxo molecular units. ACS Catal. 5, 4066–4074 (2015)

    Article  CAS  Google Scholar 

  54. N.C.S. Selvam, J. Lee, G.H. Choi, M.J. Oh, S. Xu, B. Lim, P.J. Yoo, MXene supported CoxAy (A = OH, P, Se) electrocatalysts for overall water splitting: Unveiling the role of anions in intrinsic activity and stability. J. Mater. Chem. A 7, 27383–27393 (2019)

    Article  CAS  Google Scholar 

  55. X. Zhang, X. Zhang, H.M. Xu, Z.S. Wu, H.L. Wang, Y.Y. Liang, Iron-doped cobalt monophosphide nanosheet/carbon nanotube hybrids as active and stable electrocatalysts for water splitting. Adv. Funct. Mater. 27, 1606635 (2017)

    Article  Google Scholar 

  56. E.L. Hu, J.Q. Ning, D. Zhao, C.Y. Xu, Y.Y. Lin, Y.J. Zhong, Z.Y. Zhang, Y.J. Wang, Y. Hu, A room-temperature postsynthetic ligand exchange strategy to construct mesoporous Fe-doped CoP hollow triangle plate arrays for efficient electrocatalytic water splitting. Small 14, 1704233 (2018)

    Article  Google Scholar 

  57. L. Yan, B. Zhang, J.L. Zhu, S.Z. Zhao, Y.Y. Li, B. Zhang, J.J. Jiang, X. Ji, H.Y. Zhang, P.K. Shen, Chestnut-like copper cobalt phosphide catalyst for all-pH hydrogen evolution reaction and alkaline water electrolysis. J. Mater. Chem. A 7, 14271–14279 (2019)

    Article  CAS  Google Scholar 

  58. Y.P. Zhu, Y.P. Liu, T.Z. Ren, Z.Y. Yuan, Self-supported cobalt phosphide mesoporous nanorod arrays: A flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Adv. Funct. Mater. 25, 7337–7347 (2015)

    Article  CAS  Google Scholar 

  59. F.T. Tsai, H.C. Wang, C.H. Ke, W.F. Liaw, FeCo/FeCoPxOy(OH)z as bifunctional electrodeposited-film electrodes for overall water splitting. ACS Appl. Energy Mater. 1, 5298–5307 (2018)

    CAS  Google Scholar 

Download references

Funding

This work was sponsored by the Special Fund of Jiangsu Province for Science and Technology Achievements Transformation (BA2020060), the Research on Open Sharing of Large Scientific Instruments in Jiangsu Province and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

Yingping Zheng: Conceptualization, Data curation, Formal analysis, Investigation, Writing – review & editing. Dehua Yu: Writing – review editing, Validation. Ke Zhang: Resources, Supervision, Writing – review & editing. Wei Xu: Resources, Supervision, Discussions. Kaili Ma: Writing – review & editing, Discussions. Yuhang Wang: Resources, Supervision. Yongbing Lou: Writing – review & editing, Formal analysis, Discussions.

Corresponding author

Correspondence to Yongbing Lou.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Consent for Publication

This manuscript is original. This article has not been published and is not being considered for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13535 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Yu, D., Zhang, K. et al. Dandelion-like P-Doped Fe-Co-Se Grown on Carbon Cloths for Enhanced Electrocatalytic Oxygen Evolution. Electrocatalysis 14, 776–787 (2023). https://doi.org/10.1007/s12678-023-00835-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-023-00835-w

Keywords

Navigation