Skip to main content
Log in

CuCo-MOF/MoS2 as a High-Performance Electrocatalyst for Oxygen Evolution Reaction

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Metal–organic frame materials (MOFs) create ordered spatial structures through organic bridges and metal ion centers. This microstructure can effectively disperse the active centers. In this work, CuCo-MOF was firstly prepared by hydrothermal method and then physically mixed with MoS2. The prepared materials were applied to study the catalytic performance for oxygen evolution reaction (OER). The results show that the overpotential and Tafel slope of CuCo-MOF/MoS2 are 336 mV and 75 mV dec−1. The addition of MoS2 can effectively reduce the stacking of MOFs and increase the effective contact area with the reactants and promote charge/mass transport as well as enhance the catalytic activity. In addition, MoS2 has strong viscosity, and when it is mixed with MOF, the stability of the composite can be improved. The good OER performance of CuCo-MOF/MoS2 provides a reference for the exploration of a novel OER catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.L. Xie, F. Li, S.X. Xu, J.Y. Li, W. Zeng, Chin. J. Catal. 40, 1205–1211 (2019)

    Article  CAS  Google Scholar 

  2. Q. Qiu, T. Wang, L.H. Jing, K. Huang, D.B. Qin, Int. J. Energy. 45, 11077–11088 (2020)

    CAS  Google Scholar 

  3. G.Q. Zhao, K. Rui, S.X. Dou, W.P. Sun, J. Mater. Chem. A. 8, 6393–6405 (2020)

    Article  CAS  Google Scholar 

  4. H. Over, ACS Catal. 11, 8848–8871 (2021)

    Article  CAS  Google Scholar 

  5. T.D. Nguyen, G.G. Scherer, Z.C. Xu, Electrocatalysis 7, 420–427 (2016)

    Article  CAS  Google Scholar 

  6. T. Audichon, T. W. Napporn, C. Canaff, C. Morais, C. Comminges, K.B. Kokoh J. Phys. Chem. C. 120, 2562–2573 (2016)

  7. S.W. Lee, C. Baik, T.Y. Kim, C. Pak, Catal. Today. 352, 39–46 (2020)

    Article  Google Scholar 

  8. Y. Li, Z.G. Gao, H.M. Bao, B.H. Zhang, C. Wu, C.F. Huang, Z.L. Zhang, Y.Y. Xie, H. Wang, J. Energy Chem. 53, 251–259 (2021)

    Article  CAS  Google Scholar 

  9. L. Yaqoob, T. Noor, N. Iqbal, H. Nasir, M. Sohail, N. Zaman, M. Usman, Renew. Energ. 156, 1040–1054 (2020)

    Article  CAS  Google Scholar 

  10. F.Q. Zheng, Z.W. Zhang, D. Xiang, P. Li, C. Du, Z.H. Zhuang, X. Li, W. Chen, J. Colloid Interface Sci. 555, 541–547 (2019)

    Article  CAS  PubMed  Google Scholar 

  11. H.X. Jia, Y.H. Yao, J.T. Zhao, Y.Y. Gao, Z.L. Luo, P.W. Du, J. Mater. Chem. A. 6, 1188–1195 (2018)

    Article  CAS  Google Scholar 

  12. B. Wang, D. Chen, S.H. Jiao, Q. Zhang, W.W. Wang, M.J. Lu, Z.X. Fang, G.S. Pang, S.H. Feng, New J. Chem. 45, 19646–19650 (2021)

    Article  CAS  Google Scholar 

  13. K. Natarajan, A.K. Gupta, S.N. Ansari, M. Saraf, S.M. Mobin, ACS Appl Mater Inter. 11, 13295–13303 (2019)

    Article  CAS  Google Scholar 

  14. P.C. He, Y.B. Xie, Y.B. Dou, J. Zhou, A. Zhou, X. Wei, J.R. Li, ACS Appl Mater Inter. 11, 41595–41601 (2019)

    Article  CAS  Google Scholar 

  15. S. Debata, S. Banerjee, P.K. Sharma, Electrochim. Acta 303, 257–267 (2019)

    Article  CAS  Google Scholar 

  16. V. Ganesan, J. Kim, Int. J. Hydrogen Energy. 45, 13290–13299 (2020)

    Article  CAS  Google Scholar 

  17. G.M. Rafael, P. Jinbo, B. Alicja, Q.T. Huy, Z. Liang, G. Thomas, F. Lei, Z.F. Liu, H.R. Mark, ACS Nano 13, 978–995 (2019)

    Google Scholar 

  18. N. Feng, R. Meng, L. Zu, Y. Feng, C. Peng, J. Huang, G. Liu, B. Chen, J. Yang, Nat Commun. 10, 1372 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Y.L. Sun, J. Wang, Q. Liu, M.R. Xia, Y.F. Tang, F.M. Gao, Y.L. Hou, J. Tse, Y.F. Zhao, J. Mater. Chem. A. 7, 27175–27185 (2019)

    Article  CAS  Google Scholar 

  20. Z.J. Wang, Z.L. Jin, G.R. Wang, B.Z. Ma, Int. J. Hydrogen Energy. 43, 13039–13050 (2018)

    Article  CAS  Google Scholar 

  21. E. German, R. Gebauer, Appl. Surf. Sci. 528, 146591 (2020)

    Article  CAS  Google Scholar 

  22. S.W. Song, Y.H. Wang, W. Li, P.F. Tian, S.Y. Zhou, H.W. Gao, X.Q. Tian, J.B. Zang, Electrochim. Acta 332, 135454 (2020)

    Article  CAS  Google Scholar 

  23. X.B. Hu, H.Y. Wang, S.Y. Qi, Z.L. Su, J.J. Wang, K.X. Chen, S.J. Li, X. Huang, S.P. Luo, A.J. Xie, Ionics 28, 813–821 (2021)

    Article  Google Scholar 

  24. X.S. Su, Q.Q. Sun, J.J. Bai, Z.L. Wang, C. Zhao, Electrochim. Acta 260, 477–482 (2018)

    Article  CAS  Google Scholar 

  25. M.Z. Saidi, H. Akram, O. Achak, E. moujahid, El.A. Mouakibi, N. Canilho, C. Delgado-Sánchez, A. Celzard, V. Fierro, A. Pasc, T. Chafik, Colloids Surf. A. 572, 174–181 (2019)

  26. P. Nezhad-Mokhtari, N. Arsalani, S. Javanbakht, A. Shaabani, J. Drug Delivery Sci. Technol. 50, 174–180 (2019)

    Article  CAS  Google Scholar 

  27. N. Chaudhary, M. Khanuja, S.S. Islam, Polymer 165, 168–173 (2019)

    Article  CAS  Google Scholar 

  28. X. Li, Z. Zhang, A. Fakhri, V.K. Gupta, S. Agarwal, Int. J. Biol. Macromol. 136, 469–475 (2019)

    Article  CAS  PubMed  Google Scholar 

  29. J. Zhou, Y.B. Dou, A. Zhou, L. Shu, Y. Chen, J.R. Li, ACS Energy Lett. 3, 1655–1661 (2018)

    Article  CAS  Google Scholar 

  30. Y. Wang, H. Yu, L. Zhu, Z. Shi, R. Wang, Z. Zhang, S. Qiu, J. Colloid Interface Sci. 585, 276–286 (2021)

    Article  CAS  PubMed  Google Scholar 

  31. X. Zhang, S.W. Liu, Y.P. Zang, R.R. Liu, G.Q. Liu, G.Z. Wang, Y.X. Zhang, H.M. Zhang, H.J. Zhao, Nano Energy 30, 93–102 (2016)

    Article  CAS  Google Scholar 

  32. X.T. Yuan, H.X. Ge, X. Wang, C.L. Dong, W.J. Dong, J.X. Zhang, F.Q. Huang, ACS Energy Lett. 2, 1208–1213 (2017)

    Article  CAS  Google Scholar 

  33. M.C. Quevedo, G. Galicia, R. Mayen-Mondragon, J.G. Llongueras, J. Mater. Res. Technol. 7, 149–157 (2018)

    Article  CAS  Google Scholar 

  34. A. Jayakumar, R.P. Antony, J. Zhao, J.M. Lee, Electrochim. Acta. 265, 336–347 (2018)

    Article  CAS  Google Scholar 

  35. C.L. Qin, A.X. Fan, X. Zhang, S.Q. Wang, X.L. Yuan, X.P. Dai, J. Mater. Chem. A. 7, 27594–27602 (2019)

    Article  CAS  Google Scholar 

  36. K. Khan, A.K. Tareen, M. Aslam, Y. Zhang, R. Wang, Z. Ouyang, Z. Gou, H. Zhang, Nanoscale 11, 21622–21678 (2019)

    Article  CAS  PubMed  Google Scholar 

  37. Q.Q. Lin, J.M. Liang, J.P. Liu, Q.C. Zhang, W.C. Peng, Y. Li, F.B. Zhang, X.B. Fan, Ind. Eng. Chem. Res. 58, 23093–23098 (2019)

    Article  CAS  Google Scholar 

  38. Y. Wang, W.M. Sun, X.F. Ling, X.K. Shi, L.L. Li, Y.D. Deng, C.H. An, X.P. Han, Chem. Eur. J. 26, 4097–40103 (2019)

    Article  PubMed  Google Scholar 

  39. K. Fan, Z.L. Jin, G.R. Wang, H. Yang, D.D. Liu, H.Y. Hu, G.X. Lu, Y.P. Bi, Catal. Sci. Technol. 8, 2352–2363 (2018)

    CAS  Google Scholar 

  40. X.X. Wang, L. Li, Z. Wang, Z.Y. Wu, M. Zhu, S.L. Gai, Z.L. Liu, P.P. Yang, Electrochim. Acta. 353, 136527 (2020)

    Article  CAS  Google Scholar 

  41. Y. Yang, Y. Ou, Y. Yang, X. Wei, D. Gao, L. Yang, Y. Xiong, H. Dong, P. Xiao, Y. Zhang, Nanoscale 11, 23296–23303 (2019)

    Article  CAS  PubMed  Google Scholar 

  42. L.S. Ferreira, T.R. Silva, J.R.D. Santos, V.D. Silva, R.A. Raimundo, M.A. Morales, D.A. Macedo, Mater. Chem. Phys. 237, 121847 (2019)

    Article  CAS  Google Scholar 

  43. M. Łuba, T. Mikołajczyk, M. Kuczyński, B. Pierożyński, I.M. Kowalski, Catalysts 11, 468 (2021)

    Article  Google Scholar 

  44. Q. Wang, H.Y. Wang, S.Y. Qi, Z.L. Su, K.X. Chen, X.L. Yu, A.J. Xie, S.P. Luo, J. Electrochem. Soc. 169, 026508 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Changzhou Science and Technology Support Plan (Social Development, CE20205052). The characterizations were provided by the Analysis and Testing Center, NERC Biomass of Changzhou University (Jiangsu Province, China).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiping Luo or Aijuan Xie.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Hu, X., Zhang, L. et al. CuCo-MOF/MoS2 as a High-Performance Electrocatalyst for Oxygen Evolution Reaction. Electrocatalysis 14, 333–340 (2023). https://doi.org/10.1007/s12678-022-00797-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00797-5

Keywords

Navigation