Skip to main content

Advertisement

Log in

Proton Relay Mediated Electrocatalytic Hydrogen Evolution by an Economic Co(III) Complex

  • Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Bis(iminidiacetato)cobaltate(III) complex has been evaluated for electrocatalytic proton reduction. The process follows a rare pathway of protonation of ligand upon addition of a weak acid in DMF/water (9:1 v/v) medium. Thus, the complex becomes electroactive only in the presence of acid. In the presence of weak acid, a new reduction peak corresponding to CoI/Co0 reduction is observed. The electrocatalytic activity towards proton reduction reaction is exhibited by this peak. An electrochemical-chemical-electrochemical (ECE) route initiated by proton relay on ligand site has been established for the electrocatalytic process. The catalytic activity of the complex in DMF/water medium was evaluated by controlled potential electrolysis, turnover number (TON), and turnover frequency (TOF).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Materials

Data will be made available on request.

References

  1. I. Dincer and A. Abu-Rayash, Energy sources in Energy Sustainability (Elsevier, 2020). https://doi.org/10.1016/B978-0-12-819556-7.00002-4.

  2. P. Nikolaidis, A. Poullikkas, A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 67, 597–611 (2017)

    Article  CAS  Google Scholar 

  3. J. Zhu, L. Hu, P. Zhao, L.Y.S. Lee, K.Y. Wong, Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chem. Rev. 120, 851–918 (2020)

    Article  CAS  PubMed  Google Scholar 

  4. N. Queyriaux, R.T. Jane, J. Massin, V. Artero, M. Chavarot-Kerlidou, Recent developments in hydrogen evolving molecular cobalt(II)-polypyridyl catalysts. Coord. Chem. Rev. 304–305, 3–19 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  5. K.E. Dalle, J. Warnan, J.J. Leung, B. Reuillard, I.S. Karmel, E. Reisner, Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chem. Rev. 119, 2752–2875 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. X. Hu, B.S. Brunschwig, J.C. Peters, Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes. J. Am. Chem. Soc. 129, 8988–8998 (2007)

    Article  CAS  PubMed  Google Scholar 

  7. Y. Sun, J.P. Bigi, N.A. Piro, M.L. Tang, J.R. Long, C.J. Chang, Molecular cobalt pentapyridine catalysts for generating hydrogen from water. J. Am. Chem. Soc. 133, 9212–9215 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. M. Wang, L. Chen, L. Sun, Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts. Energy Environ. Sci. 5, 6763–6778 (2012)

    Article  CAS  Google Scholar 

  9. V. Artero, M. Chavarot-Kerlidou, M. Fontecave, Splitting water with cobalt. Angew. Chemie - Int. Ed. 50, 7238–7266 (2011)

    Article  CAS  Google Scholar 

  10. B. Kandemir, L. Kubie, Y. Guo, B. Sheldon, K.L. Bren, Hydrogen Evolution from Water under Aerobic Conditions Catalyzed by a Cobalt ATCUN Metallopeptide. Inorg. Chem. 55, 1355–1357 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. J.L. Alvarez-Hernandez, A.E. Sopchak, K.L. Bren, Buffer p K a Impacts the Mechanism of Hydrogen Evolution Catalyzed by a Cobalt Porphyrin-Peptide. Inorg. Chem. 59, 8061–8069 (2020)

    Article  CAS  PubMed  Google Scholar 

  12. M. Stylianou, C. Drouza, Z. Viskadourakis, J. Giapintzakis and A. D. Keramidas, Synthesis, structure, magnetic properties and aqueous solution characterization of p-hydroquinone and phenol iminodiacetate copper(ii) complexes. Dalt. Trans. 6188–6204 (2008)

  13. Z. Chen, Y. Li, C. Jiang, F. Liang and Y. Song, Metal complexes with N-(2-pyridylmethyl)iminodiacetate: From discrete polynuclear compounds to 1D coordination polymers. Dalt. Trans. 5290–5299 (2009)

  14. J. Gao, F. Xing, Y. Bai, S. Zhu, Synthesis, spectroscopy, and binding constants of ketocatechol-containing iminodiacetic acid and its Fe(iii), Cu(ii), and Zn(ii) complexes and reaction of Cu(ii) complex with H2O2 in aqueous solution. Dalt. Trans. 43, 7964–7978 (2014)

    Article  CAS  Google Scholar 

  15. S. Edebali, E. Pehlivan, Evaluation of chelate and cation exchange resins to remove copper ions. Powder Technol. 301, 520–525 (2016)

    Article  CAS  Google Scholar 

  16. C. Kremer, J. Torres, S. Domínguez, Lanthanide complexes with oda, ida, and nta: From discrete coordination compounds to supramolecular assemblies. J. Mol. Struct. 879, 130–149 (2008)

    Article  CAS  Google Scholar 

  17. Y. Zhao, J. Zhu, W. He, Z. Yang, Y. Zhu, Y. Li, J. Zhang, Z. Guo, Oxidative DNA cleavage promoted by polynuclear copper complexes bearing iminodiacetate chelator. Inorganica Chim. Acta 399, 112–118 (2013)

    Article  CAS  Google Scholar 

  18. M. Bagherzadeh, M. Amini, D.M. Boghaei, M.M. Najafpour, V. McKee, Synthesis, X-ray structure, characterization and catalytic activity of a polymeric manganese(II) complex with iminodiacetate. Appl. Organomet. Chem. 25, 559–563 (2011)

    Article  CAS  Google Scholar 

  19. J. Drzeżdżon, J. Malinowski, A. Sikorski, B. Gawdzik, P. Rybinski, L. Chmurzyński, D. Jacewicza, Iminodiacetate complex of cobalt(II) – Structure, physicochemical characteristics, biological properties and catalytic activity for 2-chloro-2-propen-1-ol oligomerization. Polyhedron 175, 114168 (2020)

    Article  Google Scholar 

  20. J. Hidaka, Y. Shimura and R.Tsuchida, Rotatory Dispersion of Metallic Co-ordination Compounds. III. Absorption Spectra and Rotatory Dispersion of Cobalt(III) Complexes of the [CoN 2 O 4 ] − Type. Bull. Chem. Soc. Jpn. 35, 567–571 (1962)

  21. P.C. Junk, M.K. Smith, Crystal and molecular structure of potassium trans-bis(iminodiacetato)-Cobaltate(III)-2H2O. J. Coord. Chem. 55, 1091–1096 (2002)

    Article  CAS  Google Scholar 

  22. N. Smrečki, O. Jovic, V. Stilinovic, B-M Kukovec, M. Dakovic and Z. Popovic, Cobalt(II) and nickel(II) complexes with N-benzyl- and N-(p-nitrobenzyl)iminodiacetic acids. Structural and vibrational spectroscopic characterization and DFT study. Inorganica Chim. Acta 453, 95–103 (2016)

  23. H. Kawaguchi, T. Ama, T. Yasui, Base-Catalyzed Isomerization of the (Iminodiacetato)-(N-Methyliminodiacetato)Cobaltate(III) and Bis-(Iminodiacetato)Cobaltate(III) Ions. Bull. Chem. Soc. Jpn. 57, 2422–2427 (1984)

    Article  CAS  Google Scholar 

  24. I. Lukes, I. Smidova, A Study of Bis (iminodiacetato) cobaltates (II) and (III). Inorganica Chim. Acta 58, 95–100 (1982)

  25. P. Wang, G. Liang, M.R. Reddy, M. Long, K. Driskill, C. Lyons, B. Donnadieu, J.C. Bollinger, C.E. Webster, X. Zhao, Electronic and Steric Tuning of Catalytic H2 Evolution by Cobalt Complexes with Pentadentate Polypyridyl-Amine Ligands. J. Am. Chem. Soc. 140, 9219–9229 (2018)

    Article  CAS  PubMed  Google Scholar 

  26. K. Walaijai, S.A. Cavill, A.C. Whitwood, R.E. Douthwaite, R.N. Perutz, Electrocatalytic Proton Reduction by a Cobalt(III) Hydride Complex with Phosphinopyridine PN Ligands. Inorg. Chem. 59, 18055–18067 (2020)

    Article  CAS  PubMed  Google Scholar 

  27. C. H. Lee, D. K. Dogutan and D. G. Nocera Hydrogen generation by hangman metalloporphyrins. J. Am. Chem. Soc. 133, 8775–8777 (2011)

  28. A.C. Cavell, C.L. Hartley, D. Liu, C.S. Tribble, W.R. McNamara, Sulfinato Iron(III) complex for electrocatalytic proton reduction. Inorg. Chem. 54, 3325–3330 (2015)

    Article  CAS  PubMed  Google Scholar 

  29. J-M. Savéant, & C. Costentin, Elements of Molecular and Biomolecular Electrochemistry. Elements of Molecular and Biomolecular Electrochemistry, (Wiley 2019). ISBN: 978–1–119–29233–3

  30. Z. Xiao, M. Natarajan, W. Zhong, X. Liu, Probing into the electrochemistry of four nickel(II) and cobalt(II) complexes with azadiphosphine ligands (PNP) and their catalysis on proton reduction. Electrochim. Acta 340, 135998 (2020)

    Article  CAS  Google Scholar 

  31. R.A. Rader, D.R. Mcmillin, Electrochemistry of Iminodiacetate Complexes of Cobalt at Stationary Electrodes. Inorg. Chem. 18, 545–549 (1979)

    Article  CAS  Google Scholar 

  32. R.J. Dirisio, J.E. Armstrong, M.A. Frank, W.R. Lake, W.R. McNamara, Cobalt Schiff-base complexes for electrocatalytic hydrogen generation. Dalt. Trans. 46, 10418–10425 (2017)

    Article  CAS  Google Scholar 

  33. S. Rai, K. Majee, M. Raj, A. Pahari, J. Patel, S.K. Padhi, Electrocatalytic proton and water reduction by a Co(III) polypyridyl complex. Polyhedron 159, 127–134 (2019)

    Article  CAS  Google Scholar 

  34. C.P. Yap, Y.Y. Chong, T.S. Chwee, W.Y. Fan, Electrocatalytic proton reduction by an air-stable nickel(II)-thiolato PNN pincer complex. Dalton Trans. 47, 8483 (2018)

    Article  CAS  PubMed  Google Scholar 

  35. Y. X. Christel Goh, H. M. Tang, W. L. J Loke. and W. Y. Fan, Bis(cyclopentadienyl) nickel(II) μ-Thiolato Complexes as Proton Reduction Electrocatalysts, Inorg. Chem. 58, 12178−12183 (2019)

  36. H.-B. Cui, J.-H. Li, X. Zhang, M. Zhou, Z.-Z. Huang, Y.-C. Lai, J.-X. Qui, Y.-J. Ren, H.-X. Zhang, Electrocatalytic hydrogen evolution by Co(II) complexes of bistriazolylpyridines. Int. J. Hydrogen Energy 48, 10891–10902 (2023)

    Article  CAS  Google Scholar 

  37. T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Sci. Rep. 5, 13801 (2015)

    Article  Google Scholar 

  38. M. Raj, S.K. Padhi, Electrocatalytic proton reduction by dinuclear cobalt complexes in a nonaqueous electrolyte. New J. Chem. 46, 6027–6038 (2022)

    Article  CAS  Google Scholar 

  39. A. Alobaid, C. Wang, R.A. Adomaitis, Mechanism and Kinetics of HER and OER on NiFe LDH Films in an Alkaline Electrolyte. J. Electrochem. Soc. 165(15), J3395–J3404 (2018)

    Article  CAS  Google Scholar 

  40. K.K. Kpogo, S. Mazumder, D. Wang, H.B. Schlegel, A.T. Fiedler, C.N. Verani, Bimetallic Cooperativity in Proton Reduction with an Amido-Bridged Cobalt Catalyst. Chem A Eur J 23, 9272–9279 (2017)

    Article  CAS  Google Scholar 

  41. D. Basu, M.M. Allard, F.R. Xavier, M.J. Heeg, H.B. Schlegel, C.N. Verani, Modulation of electronic and redox properties in phenolate-rich cobalt(iii) complexes and their implications for catalytic proton reduction. Dalton Trans. 44, 3454–3466 (2015)

    Article  CAS  PubMed  Google Scholar 

  42. B.B. Beyene, S.B. Mane, C.-H. Hung, Electrochemical Hydrogen Evolution by Cobalt (II) Porphyrins: Effects of Ligand Modification on Catalytic Activity, Efficiency and Overpotential. J. Electrochem. Soc. 165, H481–H487 (2018)

    Article  CAS  Google Scholar 

  43. W.M. Singh, T. Baine, S. Kudo, S. Tian, X.A.N. Ma, H. Zhou, N.J.D. Yonker, T.C. Pham, J.C. Bollinger, D.L. Baker, B. Yan, C.E. Webster, X. Zhao, Electrocatalytic and Photocatalytic Hydrogen Production in Aqueous Solution by a Molecular Cobalt Complex. Angew. Chemie 124, 6043–6046 (2012)

    Article  Google Scholar 

  44. A. Arvinte, F. Doroftei, M. Pinteala, Comparative electrodeposition of Ni–Co nanoparticles on carbon materials and their efficiency in electrochemical oxidation of glucose. J. Appl. Electrochem. 46, 425–439 (2016)

    Article  CAS  Google Scholar 

  45. D. Grujicic, B. Pesic, Electrochemical and AFM study of cobalt nucleation mechanisms on glassy carbon from ammonium sulfate solutions. Electrochim. Acta 49, 4719–4732 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. A. K. Tyagi, Director, Chemistry Group, BARC and Dr. Awadhesh Kumar, Head, Radiation & Photochemistry Division, BARC for their keen interest and encouragement in carrying out this work. We thank Mr. Amey P. Wadawale, ChD, BARC for helping us with the single crystal XRD measurement.

Author information

Authors and Affiliations

Authors

Contributions

Dwipayan Majumder: carried out synthesis, electrochemical studies, and data analysis and prepared the manuscript. Siddhartha Koley: characterized the complex by elemental analysis, XRD, NMR, and IR. Vaidehi Sharan Tripathi: conceptualizing the study, data curation, and manuscript writing.

Corresponding author

Correspondence to V. S. Tripathi.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 906 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, D., Kolay, S. & Tripathi, V.S. Proton Relay Mediated Electrocatalytic Hydrogen Evolution by an Economic Co(III) Complex. Electrocatalysis 14, 602–610 (2023). https://doi.org/10.1007/s12678-023-00823-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-023-00823-0

Keywords

Navigation