Skip to main content

Advertisement

Log in

Water Composition and Electrocatalytic Aspects for Efficient Chlorine Generation

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

This work evaluates the water disinfection performance of the Activ’H2O system based on in situ production of oxidizing agents. The system is composed of two identical dimensionally stable anodes (DSA) made of iridium–ruthenium oxide layer deposited on a titanium plate (Ti/IrO2–RuO2). Herein, we have characterized and assessed the oxidizing power of in situ produced species and their inhibitor agents. The disinfectant power was evaluated according to the hypochlorous acid (HClO) production, ensuring the best microbiological water quality, which increases proportionally with the increase in applied electric current. High chloride concentration with low current density leads to higher current efficiency and low chlorate production without producing any H2O2 or perchlorate. A high flow rate of chloride solution slightly improves mass transfer, and active chlorine production follows, helping to keep the produced neutral HClO away from the electrical double layer (EDL). However, in conventional tap water, non-electroactive anions like sulfates, nitrate, chlorates, and bicarbonate had a negative effect on active chlorine production rate due to the transfer of competing chloride ions inside the EDL. Polyvalent anions like SO42− migrate faster, and the hydrated size of electrostatically adsorbed polyvalent and monovalent anions leads to steric clutter. Inhibition rate followed the order SO42−  > ClO3−  > NO3  > HCO3; this trend is correlated with the molar concentration ratio, migration rate, and hydration radius of the non-electroactive anions. Switching polarity proved effective in weakening competition with monovalent anions, despite current losses accompanied by each switch. However, it was ineffective with polyvalent ions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Särkkä, A. Bhatnagar, M. Sillanpää, Recent developments of electro-oxidation in water treatment - a review. J. Electroanal. Chem. 754, 46–56 (2015). https://doi.org/10.1016/j.jelechem.2015.06.016

    Article  CAS  Google Scholar 

  2. Z.B. Gönder, S. Arayici, H. Barlas, Advanced treatment of pulp and paper mill wastewater by nanofiltration process. Sep. Purif. Technol. 76, 292–302 (2011). https://doi.org/10.1016/j.seppur.2010.10.018

    Article  CAS  Google Scholar 

  3. M. Pizzichini, C. Russo, C.D. Di Meo, Purification of pulp and paper wastewater, with membrane technology, for water reuse in a closed loop. Desalination 178, 351–359 (2005). https://doi.org/10.1016/j.desal.2004.11.045

    Article  CAS  Google Scholar 

  4. Q. Zhang, K.T. Chuang, Adsorption of organic pollutants from effluents of a Kraft pulp mill on activated carbon and polymer resin. Adv. Environ. Res. 5, 251–258 (2001). https://doi.org/10.1016/S1093-0191(00)00059-9

    Article  CAS  Google Scholar 

  5. E.C. Catalkaya, F. Kargi, Advanced oxidation treatment of pulp mill effluent for TOC and toxicity removals. J. Environ. Manage. 87, 396–404 (2008). https://doi.org/10.1016/j.jenvman.2007.01.016

    Article  CAS  PubMed  Google Scholar 

  6. E.C. Catalkaya, F. Kargi, Color, TOC and AOX removals from pulp mill effluent by advanced oxidation processes: a comparative study. J. Hazard. Mater. 139, 244–253 (2007). https://doi.org/10.1016/j.jhazmat.2006.06.023

    Article  CAS  PubMed  Google Scholar 

  7. M.E.A. Kribéche, T. Sehili, G. Lesage, J. Mendret, S. Brosillon, Insight into photochemical oxidation of Fenuron in water using iron oxide and oxalate: the roles of the dissolved oxygen. J. Photochem. Photobiol. A. 329, 120–129 (2016). https://doi.org/10.1016/j.jphotochem.2016.06.021

    Article  CAS  Google Scholar 

  8. M.E.A. Kribéche, H. Mechakra, T. Sehili, S. Brosillon, Oxidative photodegradation of herbicide fenuron in aqueous solution by natural iron oxide α-Fe 2O 3, influence of polycarboxylic acids. Environmental Technology (United Kingdom) 37, 172–182 (2016). https://doi.org/10.1080/09593330.2015.1065008

    Article  CAS  Google Scholar 

  9. I.A. Balcioǧlu, E. Tarlan, C. Kivilcimdan, M. TürkerSaçan, Merits of ozonation and catalytic ozonation pre-treatment in the algal treatment of pulp and paper mill effluents. J. Environ. Manage. 85, 918–926 (2007). https://doi.org/10.1016/j.jenvman.2006.10.020

    Article  CAS  PubMed  Google Scholar 

  10. V. Fontanier, V. Farines, J. Albet, S. Baig, J. Molinier, Study of catalyzed ozonation for advanced treatment of pulp and paper mill effluents. Water Res. 40, 303–310 (2006). https://doi.org/10.1016/j.watres.2005.11.007

    Article  CAS  PubMed  Google Scholar 

  11. M. Mänttäri, M. Kuosa, J. Kallas, M. Nyström, Membrane filtration and ozone treatment of biologically treated effluents from the pulp and paper industry. J. Membr. Sci. 309, 112–119 (2008). https://doi.org/10.1016/j.memsci.2007.10.019

    Article  CAS  Google Scholar 

  12. An applied guide to water and effluent treatment plant design. Elsevier (2018). https://doi.org/10.1016/c2016-0-01092-6

  13. D. Rajkumar, J.G. Kim, Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment. J. Hazard. Mater. 136, 203–212 (2006). https://doi.org/10.1016/j.jhazmat.2005.11.096

    Article  CAS  PubMed  Google Scholar 

  14. D. Rajkumar, B.J. Song, J.G. Kim, Electrochemical degradation of reactive blue 19 in chloride medium for the treatment of textile dyeing wastewater with identification of intermediate compounds. Dyes Pigm. 72, 1–7 (2007). https://doi.org/10.1016/j.dyepig.2005.07.015

    Article  CAS  Google Scholar 

  15. A. Kraft et al., Electrochemical water disinfection. Part I. J. Appl. Electrochem. 29, 861–868 (1999). https://doi.org/10.1023/A:1003650220511

    Article  Google Scholar 

  16. M.E.H. Bergmann, A.S. Koparal, Studies on electrochemical disinfectant production using anodes containing RuO2. J. Appl. Electrochem. 35, 1321–1329 (2005). https://doi.org/10.1007/s10800-005-9064-0

    Article  CAS  Google Scholar 

  17. E. Chatzisymeon, N.P. Xekoukoulotakis, A. Coz, N. Kalogerakis, D. Mantzavinos, Electrochemical treatment of textile dyes and dyehouse effluents. J. Hazard. Mater. 137, 998–1007 (2006). https://doi.org/10.1016/j.jhazmat.2006.03.032

    Article  CAS  PubMed  Google Scholar 

  18. A. Sakalis, K. Fytianos, U. Nickel, A. Voulgaropoulos, A comparative study of platinised titanium and niobe/synthetic diamond as anodes in the electrochemical treatment of textile wastewater. Chem. Eng. J. 119, 127–133 (2006). https://doi.org/10.1016/j.cej.2006.02.009

    Article  CAS  Google Scholar 

  19. M. Gotsi, N. Kalogerakis, E. Psillakis, P. Samaras, D. Mantzavinos, Electrochemical oxidation of olive oil mill wastewaters. Water Res. 39, 4177–4187 (2005). https://doi.org/10.1016/j.watres.2005.07.037

    Article  CAS  PubMed  Google Scholar 

  20. A.M. Polcaro, A. Vacca, M. Mascia, S. Palmas, R. Pompei, S. Laconi, Characterization of a stirred tank electrochemical cell for water disinfection processes. Electrochim. Acta 52, 2595–2602 (2007). https://doi.org/10.1016/j.electacta.2006.09.015

    Article  CAS  Google Scholar 

  21. Y.Y. Chu, Y. Qian, W.J. Wang, X.L. Deng, A dual-cathode electro-Fenton oxidation coupled with anodic oxidation system used for 4-nitrophenol degradation. J. Hazard. Mater. 199–200, 179–185 (2012). https://doi.org/10.1016/j.jhazmat.2011.10.079

    Article  CAS  PubMed  Google Scholar 

  22. A. Dhaouadi, L. Monser, N. Adhoum, Anodic oxidation and electro-Fenton treatment of rotenone. Electrochim. Acta 54, 4473–4480 (2009). https://doi.org/10.1016/j.electacta.2009.03.023

    Article  CAS  Google Scholar 

  23. E. Guinea, J.A. Garrido, R.M. Rodríguez, P.L. Cabot, C. Arias, F. Centellas, E. Brillas, Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration. Electrochim. Acta 55, 2101–2115 (2010). https://doi.org/10.1016/j.electacta.2009.11.040

    Article  CAS  Google Scholar 

  24. E. Brillas, C.A. Martínez-Huitle, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl. Catal. B. Environ. 166–167, 603–643 (2015). https://doi.org/10.1016/j.apcatb.2014.11.016

  25. F. Zaviska, P. Drogui, J.F. Blais, G. Mercier, In situ active chlorine generation for the treatment of dye-containing effluents. J. Appl. Electrochem. 39, 2397–2408 (2009). https://doi.org/10.1007/s10800-009-9927-x

    Article  CAS  Google Scholar 

  26. G. Chen, Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 38, 11–41 (2004). https://doi.org/10.1016/j.seppur.2003.10.006

    Article  CAS  Google Scholar 

  27. C. Trellu, B.P. Chaplin, C. Coetsier, R. Esmilaire, S. Cerneaux, C. Causserand, M. Cretin, Electro-oxidation of organic pollutants by reactive electrochemical membranes. Chemosphere 208, 159–175 (2018). https://doi.org/10.1016/j.chemosphere.2018.05.026

    Article  CAS  PubMed  Google Scholar 

  28. M. Dunwell, Y. Yan, B. Xu, Understanding the influence of the electrochemical double-layer on heterogeneous electrochemical reactions. Curr. Opin. Chem. Eng. 20, 151–158 (2018). https://doi.org/10.1016/j.coche.2018.05.003

    Article  Google Scholar 

  29. R.S. Patil, V.A. Juvekar, V.M. Naik, A polarity switching technique for the efficient production of sodium hypochlorite from aqueous sodium chloride using platinum electrodes. Ind. Eng. Chem. Res. 53, 19426–19437 (2014). https://doi.org/10.1021/ie503084m

    Article  CAS  Google Scholar 

  30. A. Katsaounis, S. Souentie, in: Encyclopedia of applied electrochemistry, Springer New York, 122, 1407–1416 (2014).

  31. Chromatography, LC followed by UV/Vis, diode-array detector (DAD), fluorescence detector (FD), or MS is by far the most commonly selected analytical technique. From: Ionic Liquids in Separation Technology, (2014). https://doi.org/10.1007/978-1-4419-6996-5_122

  32. J. Yi, Y. Ahn, M. Hong, G.-H. Kim, N. Shabnam, B. Jeon, B.-I. Sang, H. Kim, Comparison between OCl-injection and in situ electrochlorination in the formation of chlorate and perchlorate in seawater. Applied Sciences (Switzerland) 9(2), 229 (2019). https://doi.org/10.3390/app9020229

    Article  CAS  Google Scholar 

  33. C. Comninellis, A. Nerini, Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. J. Appl. Electrochem. 25, 23–28 (1995). https://doi.org/10.1007/BF00251260

    Article  CAS  Google Scholar 

  34. L.C. Chiang, J.E. Chang, T.C. Wen, Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water Res. 29, 671–678 (1995). https://doi.org/10.1016/0043-1354(94)00146-X

    Article  CAS  Google Scholar 

  35. C.R. Costa, P. Olivi, Effect of chloride concentration on the electrochemical treatment of a synthetic tannery wastewater. Electrochim. Acta 54, 2046–2052 (2009). https://doi.org/10.1016/j.electacta.2008.08.033

    Article  CAS  Google Scholar 

  36. U.T. Un, U. Altay, A.S. Koparal, U.B. Ogutvere, Complete treatment of olive mill wastewaters by electrooxidation. Chem. Eng. J. 139, 445–452 (2008). https://doi.org/10.1016/j.cej.2007.08.009

    Article  CAS  Google Scholar 

  37. Y. Marcus, A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes. Biophys. Chem. 51, 111–127 (1994). https://doi.org/10.1016/0301-4622(94)00051-4

    Article  CAS  Google Scholar 

  38. L.A. Richards, The removal of inorganic contaminants using nanofiltration and reverse osmosis. PhD Thesis in Philosophy, Heriot-Watt University School of Engineering and Physical Sciences (2012).

  39. M.M. Waegele, C.M. Gunathunge, J. Li, X. Li, How cations affect the electric double layer and the rates and selectivity of electrocatalytic processes. J. Chem. Phys. 151(16), 160902 (2019). https://doi.org/10.1063/1.5124878

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank BPI France for providing funding through the Carbiosep project (FUI-AAP20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El Amine Kribeche.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kribeche, M.E.A., Zaviska, F., Brosillon, S. et al. Water Composition and Electrocatalytic Aspects for Efficient Chlorine Generation. Electrocatalysis 13, 414–424 (2022). https://doi.org/10.1007/s12678-022-00728-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00728-4

Keywords

Navigation