Skip to main content

Advertisement

Log in

Electrochemical Oxidation of Pharmaceuticals on a Pt–SnO2/Ti Electrode

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The application of an advanced oxidation process, electrochemical oxidation, was evaluated for the degradation of the nonsteroidal anti-inflammatory substance, diclofenac (DCF), by using an electrode (anode) of Pt–SnO2 on a titanium substrate (Pt–SnO2/Ti). An increased decomposition rate of DCF was recorded. Different experimental parameters such as current intensity, initial concentration of substrate, irradiation, and pH were evaluated. The effects of bicarbonate and chloride ions and humic acid (HA) were also assessed. It was found that the electrochemical degradation follows pseudo-first-order kinetic with respect to the initial substrate concentration. The kinetics rate constant was shown to increase with increasing chloride concentration and current intensity, while it decreased with increasing initial DCF concentration.

Additionally, the results showed that the concentration of bicarbonate ions slightly diminishes the process yield, while ultraviolet A (UVA) irradiation does not accelerate DCF decomposition. In contrast, lower pH values contributed to faster degradation of the target substance. The effect of the aqueous matrix was also evaluated. A higher rate of DCF decomposition within a shorter time interval was recorded when secondary effluent (WW) was used. On the contrary, HA was found to slow down the process. Finally, experiments were carried out to investigate the degradation of another pharmaceutical, sulfamethoxazole (SMX). It was found that SMX was degraded at 73.1% in 30 min, while for the same time; the abatement of DCF was 44.5%. This study demonstrates the efficiency of electrochemical oxidation for the abatement of pharmaceuticals with an anode of platinum-tin dioxide on titanium substrate in water matrices.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.G. Capodaglio, A. Bojanowska-Czajka, M. Trojanowicz, Environ. Sci. Pollut. Res. Int. (2018). https://doi.org/10.1007/s11356-018-1913-6

    Article  PubMed  Google Scholar 

  2. P. Sathishkumar, R. Anu Alias Meena, T. Palanisami, V. Ashokkumar, T. Palvannan, F.L. Gu, Sci. Total Environ. (2020). https://doi.org/10.1016/j.scitotenv.2019.134057

  3. M.O. Barbosa, N.F.F. Moreira, N.A.R. Ribeiro, M.F.R. Pereira, A.M.T. Silva, Water Res. (2016). https://doi.org/10.1016/j.watres.2016.02.047

    Article  PubMed  Google Scholar 

  4. P. Schröder, B. Helmreich, B. Škrbić, M. Carballa, M. Papa, C. Pastore, Z. Emre, A. Oehmen, A. Langenhoff, M. Molinos, J. Dvarioniene, C. Huber, K.P. Tsagarakis, E. Martinez-Lopez, S.M. Pagano, C. Vogelsang, G. Mascolo, Environ. Sci. Pollut. Res. Int. (2016). https://doi.org/10.1007/s11356-016-6503-x

    Article  PubMed Central  PubMed  Google Scholar 

  5. N. Vieno, M. Sillanpää, Environ. Int. (2014). https://doi.org/10.1016/j.envint.2014.03.021

    Article  PubMed  Google Scholar 

  6. A.S. Mestre, A.P. Carvalho, Molecules. (2019). https://doi.org/10.3390/molecules24203702

    Article  PubMed Central  PubMed  Google Scholar 

  7. L. Lonappan, S.K. Brar, R.K. Das, M. Verma, R.Y. Surampalli, Environ. Int. (2016). https://doi.org/10.1016/j.envint.2016.09.014

    Article  PubMed  Google Scholar 

  8. T. Aus der Beek, F.A. Weber, A. Bergmann, S. Hickmann, I. Ebert, A. Hein, A. Küster, Environ. Toxicol. Chem. (2016). https://doi.org/10.1002/etc.3339

  9. Y. Zhang, S.-U. Geissen, C. Gal, Chemosphere. (2008). https://doi.org/10.1016/j.chemosphere.2008.07.086

    Article  PubMed  Google Scholar 

  10. P.Y. Nguyen, G. Carvalho, M.A.M. Reis, A. Oehmen, Water Res. (2021). https://doi.org/10.1016/j.watres.2020.116446

    Article  PubMed  Google Scholar 

  11. S. Dahane, M.D.G. Garcia, M.J.M.A. Bueno, A.U. Moreno, M.M. Galera, A. Derdour, J. Chromatogr. A. (2013). https://doi.org/10.1016/j.chroma.2013.05.002

  12. P. Paíga, L.H.M.L.M. Santos, S. Ramos, S. Jorge, J.G. Silva, C. Delerue-Matos, Sci. Total Environ. (2016). https://doi.org/10.1016/j.scitotenv.2016.08.089

  13. A. Togola, H. Budzinski, J. Chromatogr. A (2008). https://doi.org/10.1016/j.chroma.2007.10.105

    Article  PubMed  Google Scholar 

  14. A.L. Spongberg, J.D. Witter, Sci. Total. Environ. (2008). https://doi.org/10.1016/j.scitotenv.2008.02.042

    Article  PubMed  Google Scholar 

  15. S. Tewari, R. Jindal, Y.L. Kho, S. Eo, K. Choi, Chemosphere. (2013). https://doi.org/10.1016/j.chemosphere.2012.12.042

    Article  PubMed  Google Scholar 

  16. H.I.S. Kafeenah, R. Osman, N.K.A. Bakar, RSC Adv. (2018). https://doi.org/10.1039/C8RA06885B

    Article  PubMed Central  PubMed  Google Scholar 

  17. V. Koutsouba, T. Heberer, B. Fuhrmann, K. Schmidt-Baumler, D. Tsipi, A. Hiskia, Chemosphere. (2003). https://doi.org/10.1016/S0045-6535(02)00819-6

    Article  PubMed  Google Scholar 

  18. W.-J. Sim, J.-W. Lee, E.-S. Lee, S.-K. Shin, S.-R. Hwang, J.-E. Oh, Chemosphere (2011). https://doi.org/10.1016/j.chemosphere.2010.10.026

    Article  PubMed  Google Scholar 

  19. R. Loos, R. Carvalho, D.C. Antonio, S. Comero, G. Locoro, S. Tavazzi, B. Paracchini, M. Ghiani, T. Lettieri, L. Blaha, B. Jarosova, S. Voorspoels, K. Servaes, P. Haglund, J. Fick, R.H. Lindberg, D. Schwesig, B.M. Gawlik, Water Res. (2013). https://doi.org/10.1016/j.watres.2013.08.024

    Article  PubMed  Google Scholar 

  20. P. Kokkinos, D. Mantzavinos, D. Venieri, Molecules. (2020). https://doi.org/10.3390/molecules25092016

    Article  PubMed Central  PubMed  Google Scholar 

  21. M. Klavarioti, D. Mantzavinos, D. Kassinos, Environ. Int. (2009). https://doi.org/10.1016/j.envint.2008.07.009

    Article  PubMed  Google Scholar 

  22. M. Petrovic, S. Gonzalez, D. Barcelo, Trends. Analyt. Chem. (2003). https://doi.org/10.1016/S0165-9936(03)01105-1

    Article  Google Scholar 

  23. Z. Frontistis, M. Antonopoulou, D. Venieri, I. Konstantinou, D. Mantzavinos, J. Environ. Manage. (2017). https://doi.org/10.1016/j.jenvman.2016.04.035

    Article  PubMed  Google Scholar 

  24. Z. Frontistis, D. Mantzavinos, S.J. Meriç, J. Environ. Manage. (2018). https://doi.org/10.1016/j.jenvman.2018.06.099

    Article  PubMed  Google Scholar 

  25. Z. Frontistis, M. Antonopoulou, M. Yazirdagi, Z. Kilinc, I. Konstantinou, A. Katsaounis, D.J. Mantzavinos, J. Environ. Manage. (2017). https://doi.org/10.1016/j.jenvman.2016.06.044

    Article  PubMed  Google Scholar 

  26. N. Pueyo, M.P. Ormad, N. Miguel, P. Kokkinos, A. Ioannidi, D. Mantzavinos, Z.J. Frontistis, J. Environ. Manage. (2020). https://doi.org/10.1016/j.jenvman.2020.110783

    Article  PubMed  Google Scholar 

  27. D. Santos, M.J. Pacheco, A. Gomes, A. Lopes, L. Ciríaco, J. Appl. Electrochem. (2013). https://doi.org/10.1007/s10800-013-0527-4

    Article  Google Scholar 

  28. E. Brillas, S. Garcia-Segura, M. Skoumal, C. Arias, Chemosphere. (2010). https://doi.org/10.1016/j.chemosphere.2010.03.004

    Article  PubMed  Google Scholar 

  29. H.R. Ghatak, Environ. Technol. (2014). https://doi.org/10.1080/09593330.2014.911357

    Article  PubMed  Google Scholar 

  30. C. Comninellis, G.P. Vercesi, J. Appl. Electrochem. (1991). https://doi.org/10.1007/BF01464294

    Article  Google Scholar 

  31. T. Panakoulias, P. Kalatzis, D. Kalderis, A. Katsaounis, J. Appl. Electrochem. (2010). https://doi.org/10.1007/s10800-010-0138-2

    Article  Google Scholar 

  32. N. Papastefanakis, D. Mantzavinos, A. Katsaounis, J Appl. Electrochem. (2010). https://doi.org/10.1007/s10800-009-0050-9

    Article  Google Scholar 

  33. J.D. García-Espinoza, P. Mijaylova-Nacheva, M. Avilés-Flores, Chemosphere. (2018). https://doi.org/10.1016/j.chemosphere.2017.10.147

    Article  PubMed  Google Scholar 

  34. A. Fernandes, D. Santos, M.J. Pacheco, L. Ciríaco, A. Lopes, Sci. Total Environ. (2016). https://doi.org/10.1016/j.scitotenv.2015.09.052

    Article  PubMed  Google Scholar 

  35. A. Katsaounis, S. Souentie, in Encyclopedia of Applied Electrochemistry ed. By G. Kreysa, K. Ota, R.F. Savinell (Springer, New York, 2014) https://doi.org/10.1007/978-1-4419-6996-5_122

  36. S. Garcia-Segura, J. Keller, E. Brillas, J. Radjenovic, J. Hazard. Mater. (2015). https://doi.org/10.1016/j.jhazmat.2014.10.003

    Article  PubMed  Google Scholar 

  37. A. Katsoni, D. Mantzavinos, E. Diamadopoulos, Environ. Sci. Pollut. Res. Int. (2014). https://doi.org/10.1007/s11356-014-2960-2

    Article  PubMed  Google Scholar 

  38. S. Parsons, Advanced oxidation processes for water and wastewater treatment. (2004). https://www.iwapublishing.com/books/9781843390176/advanced-oxidation-processes-water-and-wastewater-treatment

  39. R. Andreozzi, M. Raffaele, N. Paxéus, Chemosphere. (2003). https://doi.org/10.1016/S0045-6535(02)00769-5

    Article  PubMed  Google Scholar 

  40. T. Urase, T. Kikuta, Water Res. (2005). https://doi.org/10.1016/j.watres.2005.01.015

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petros Kokkinos.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giannakopoulos, S., Kokkinos, P., Hasa, B. et al. Electrochemical Oxidation of Pharmaceuticals on a Pt–SnO2/Ti Electrode. Electrocatalysis 13, 363–377 (2022). https://doi.org/10.1007/s12678-022-00726-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00726-6

Keywords

Navigation