Skip to main content
Log in

Enhanced Electrocatalytic Activity of Non-metal-Doped Transition Metal Oxides for an Electrochemical Detection of Furazolidone

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

An Author Correction to this article was published on 02 March 2022

This article has been updated

Abstract

In this study, we report the synthesis of non-metal (N and S)-doped transition metal oxide (TMO) TiO2 (NST) nanocomposites for electrochemical detection and visible-light-driven photocatalysis of the antibiotic drug furazolidone (FRZ). The nanocomposites were synthesized by hydrothermal process and characterized with a wide range of analytical techniques. Electrodes decorated with the nanocomposites (NST) exhibited high sensitivity in detection of FRZ, ~ 16 μA μM cm−1, and a limit of detection of 0.02350 μM. The sensing platform showed a linear dynamic range of 2 to 100 μM with a regression value of 0.9992, so it can be used to inspect real samples. The nanocomposites exhibited high photocatalytic activity against FRZ, achieving degradation efficiency of 95% in 140 min. Therefore, the non-metal doped TiO2 nanocomposites have electrochemical and photocatalytic abilities superior to those of typical noble metal-based sensors and photocatalysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

References

  1. K.Y. Hwa, T.S.K. Sharma, P. Karuppaiah, Development of an electrochemical sensor based on a functionalized carbon black/tungsten carbide hybrid composite for the detection of furazolidone. New J. Chem. 43, 12078–12086 (2019)

    Article  CAS  Google Scholar 

  2. M. Vass, K. Hruska, M. Franek, Nitrofuran antibiotics: a review on the application, prohibition and residual analysis. Vet. Med. (Praha). 53, 469 (2008) 

  3. R. Rajakumaran, A. Krishnapandi, S.M. Chen, K. Balamurugan, F.M. Chang, S. Sakthinathan, Electrochemical investigation of zinc tungstate nanoparticles; a robust sensor platform for the selective detection of furazolidone in biological samples. Microchem. J. 160, 105750 (2021)

  4. Y. Sun, G.I.N. Waterhouse, L. Xu, X. Qiao, Z. Xu, Three-dimensional electrochemical sensor with covalent organic framework decorated carbon nanotubes signal amplification for the detection of furazolidone. Sens. Actuat. B Chem. 321, 128501 (2020)

  5. B.S. He, G.A. Du, A simple and sensitive electrochemical detection of furazolidone based on an Au nanoparticle functionalized graphene modified electrode. Anal. Methods. 9, 4341–4348 (2017)

    Article  CAS  Google Scholar 

  6. P. Salgado-Figueroa, P. Jara-Ulloa, A. Alvarez-Lueje, L.J. Nunez-Vergara, J.A. Squella, Electrochemical analysis of nitrofurans based on flow injection analysis on pretreated commercial carbon nanofiber screen printed electrodes: Determination in chicken muscle samples. J. Electrochem. Soc. 160, H553 (2013)

    Article  CAS  Google Scholar 

  7. L. Fotouhi, S. Banafsheh, M.M. Heravi, Electrochemistry of the interaction of furazolidone and bovine serum albumin. Bioelectrochemistry 77, 26–30 (2009)

    Article  CAS  Google Scholar 

  8. G. Yang, W. Jin, L. Wu, Q. Wang, H. Shao, A. Qin, B. Yu, D. Li, B. Cai, Development of an impedimetric immunosensor for the determination of 3-amino-2-oxazolidone residue in food samples. Anal. Chim. Acta. 706, 120–127 (2011)

    Article  CAS  Google Scholar 

  9. K. Choi, J. Bang, I. kyu Moon, K. Kim, J. Oh, Enhanced photoelectrochemical efficiency and stability using nitrogen-doped TiO2 on a GaAs photoanode. J. Alloys. Compd. 843, 155973 (2020)

  10. G.P.J. Rani, J. Saravanan, S. Sheet, M.A.J. Rajan, Y.S. Lee, A. Balasubramani, The sensitive and selective enzyme-free electrochemical H2O2 sensor based on rGO/MnFe2 O4 nanocomposite. Electrocatalysis 9(1), 102–112 (2018)

    Article  CAS  Google Scholar 

  11. M.M. Momeni, M. Taghinejad, Y. Ghayeb, R. Bagheri, Z. Song, High-efficiency photoelectrochemical cathodic protection performance of the iron-nitrogen-sulfur-doped TiO2 nanotube as new efficient photoanodes. Mater. Res. Express. 7, 86403 (2020)

    Article  CAS  Google Scholar 

  12. A. Brindha, T. Sivakumar, Visible active N, S co-doped TiO2/graphene photocatalysts for the degradation of hazardous dyes. J. Photochem. Photobiol. A Chem. 340, 146–156 (2017)

    Article  CAS  Google Scholar 

  13. S.-R. Eun, S. Mavengere, B. Cho, J.-S. Kim, Photocatalytic reactivity of carbon–nitrogen–sulfur-doped TiO2 upconversion phosphor Composites. Catalysts 10, 1188 (2020)

    Article  CAS  Google Scholar 

  14. R. Rashid, I. Shafiq, M.J. Iqbal, M. Shabir, P. Akhter, M.H. Hamayun, A. Ahmed, M. Hussain, Synergistic effect of NS co-doped TiO2 adsorbent for removal of cationic dyes. J. Environ. Chem. Eng. 9, 105480 (2021)

  15. N. Li, X. Zhang, W. Zhou, Z. Liu, G. Xie, Y. Wang, Y. Du, High quality sulfur-doped titanium dioxide nanocatalysts with visible light photocatalytic activity from non-hydrolytic thermolysis synthesis. Inorg. Chem. Front. 1, 521–525 (2014)

    Article  CAS  Google Scholar 

  16. X. Cheng, X. Yu, Z. Xing, L. Yang, Synthesis and characterization of N-doped TiO2 and its enhanced visible-light photocatalytic activity. Arab. J. Chem. 9, S1706–S1711 (2016)

    Article  CAS  Google Scholar 

  17. Y. Zhang, S. Zhang, K. Wang, F. Ding, J. Wu, Surfactant-free solvothermal method for synthesis of mesoporous nanocrystalline TiO2 microspheres with tailored pore size. J. Nanomater. (2013)

  18. B. Bharti, S. Kumar, H.N. Lee, R. Kumar, Formation of oxygen vacancies and Ti 3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci. Rep. 6, 1–12 (2016)

    Article  CAS  Google Scholar 

  19. Q. Sun, Y.P. Peng, H. Chen, K.L. Chang, Y.N. Qiu, S.W. Lai, Photoelectrochemical oxidation of ibuprofen via Cu2O-doped TiO2 nanotube arrays. J. Hazard. Mater. 319, 121–129 (2016)

    Article  CAS  Google Scholar 

  20. H. Liu, S. Liu, Z. Zhang, X. Dong, T. Liu, Hydrothermal etching fabrication of TiO2@ graphene hollow structures: mutually independent exposed 001 and 101 facets nanocrystals and its synergistic photocatalytic effects. Sci. Rep. 6, 1–12 (2016)

    Article  Google Scholar 

  21. A. Wiatrowski, M. Mazur, A. Obstarczyk, D. Wojcieszak, D. Kaczmarek, J. Morgiel, D. Gibson, Comparison of the physicochemical properties of TiO2 thin films obtained by magnetron sputtering with continuous and pulsed gas flow. Coatings 8, 412 (2018)

    Article  Google Scholar 

  22. C. Han, M. Pelaez, V. Likodimos, A.G. Kontos, P. Falaras, K. O’Shea, D.D. Dionysiou, Innovative visible light-activated sulfur doped TiO2 films for water treatment. Appl. Catal. B Environ. 107, 77–87 (2011)

    Article  CAS  Google Scholar 

  23. H. Sun, H. Liu, J. Ma, X. Wang, B. Wang, L. Han, Preparation and characterization of sulfur-doped TiO2/Ti photoelectrodes and their photoelectrocatalytic performance. J. Hazard. Mater. 156, 552–559 (2008)

    Article  CAS  Google Scholar 

  24. Y. Zhang, X. He, J. Tang, J. Jiang, X. Ji, C. Wang, Sulfur-doped TiO2 anchored on a large-area carbon sheet as a high-performance anode for sodium-ion battery. ACS Appl. Mater. Interfaces. 11, 44170–44178 (2019)

    Article  CAS  Google Scholar 

  25. H. Han, S. Niu, Y. Zhao, T. Tan, Y. Zhang, TiO2/porous carbon composite-decorated separators for lithium/sulfur battery. Nanoscale Res. Lett. 14, 1–8 (2019)

    Article  Google Scholar 

  26. F. Dong, W. Zhao, Z. Wu, S. Guo, Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO2 nanoparticles prepared by thermal decomposition. J. Hazard. Mater. 162, 763–770 (2009)

    Article  CAS  Google Scholar 

  27. H. Luo, S. Dimitrov, M. Daboczi, J.S. Kim, Q. Guo, Y. Fang, M.A. Stoeckel, P. Samori, O. Fenwick, A.B. Jorge Sobrido, Nitrogen-doped carbon dots/TiO2 nanoparticle composites for photoelectrochemical water oxidation. ACS Appl. Nano Mater. 3, 3371–3381 (2020)

  28. N.A. Kumar, H. Nolan, N. McEvoy, E. Rezvani, R.L. Doyle, M.E.G. Lyons, G.S. Duesberg, Plasma-assisted simultaneous reduction and nitrogen doping of graphene oxide nanosheets. J. Mater. Chem. A. 1, 4431–4435 (2013)

    Article  CAS  Google Scholar 

  29. R. Sadri, M. Hosseini, S.N. Kazi, S. Bagheri, N. Zubir, K.H. Solangi, T. Zaharinie, A. Badarudin, A bio-based, facile approach for the preparation of covalently functionalized carbon nanotubes aqueous suspensions and their potential as heat transfer fluids. J. Colloid Interface Sci. 504, 115–123 (2017)

    Article  CAS  Google Scholar 

  30. D. Puentes-Camacho, E.F. Velázquez, D.E. Rodríguez-Félix, M. Castillo-Ortega, R.R. Sotelo-Mundo, T. del Castillo-Castro, Functionalization of multiwalled carbon nanotubes by microwave irradiation for lysozyme attachment: comparison of covalent and adsorption methods by kinetics of thermal inactivation. Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 045011 (2017) 

  31. M. Smith, L. Scudiero, J. Espinal, J.-S. McEwen, M. Garcia-Perez, Improving the deconvolution and interpretation of XPS spectra from chars by ab initio calculations. Carbon N. Y. 110, 155–171 (2016)

    Article  CAS  Google Scholar 

  32. M.Y. Emran, M.A. Shenashen, A.A. Abdelwahab, M. Abdelmottaleb, M. Khairy, S.A. El-Safty, Nanohexagonal Fe2O3 electrode for one-step selective monitoring of dopamine and uric acid in biological samples. Electrocatalysis 9(4), 514–525 (2018)

    Article  CAS  Google Scholar 

  33. Y. Yang, Y. Yan, X. Chen, W. Zhai, Y. Xu, Y. Liu, Investigation of a polyaniline-coated copper hexacyanoferrate modified glassy carbon electrode as a sulfite sensor. Electrocatalysis 5(4), 344–353 (2014)

    Article  CAS  Google Scholar 

  34. C. Canales, M. Antilén, M. Chapa, R. Del Río, G. Ramírez, Electro-oxidation of nitrite using an oxidized glassy carbon electrode as amperometric sensor. Electrocatalysis 6(3), 300–307 (2015)

    Article  CAS  Google Scholar 

  35. A.S. Adekunle, K.I. Ozoemena, Electron transport and electrocatalytic properties of MWCNT/nickel nanocomposites: hydrazine and diethylaminoethanethiol as analytical probes. J. Electroanal. Chem. 645(1), 41–49 (2010)

    Article  CAS  Google Scholar 

  36. T. Liu, Q. Xue, J. Jia, F. Liu, S. Zou, R. Tang, T. Chen, J. Li, Y. Qian, New insights into the effect of pH on the mechanism of ofloxacin electrochemical detection in aqueous solution. Phys. Chem. Chem. Phys. 21, 16282–16287 (2019)

    Article  CAS  Google Scholar 

  37. P. Veerakumar, A. Sangili, S.M. Chen, A. Pandikumar, K.C. Lin, Fabrication of platinum rhenium nanoparticle-decorated porous carbons: Voltammetric sensing of furazolidone. ACS Sustain. Chem. Eng. 8(9), 3591–3605 (2020)

    Article  CAS  Google Scholar 

  38. L. Fotouhi, M. Nemati, M.M. Heravi, Electrochemistry and voltammetric determination of furazolidone with a multi-walled nanotube composite film-glassy carbon electrode. J. Appl. Electrochem. 41(2), 137–142 (2011)

    Article  CAS  Google Scholar 

  39. W. Zhang, Z. Niu, K. Yin, F. Liu, L. Chen, Degradation of furazolidone by bacteria Acinetobacter calcoaceticus T32, Pseudomonas putida SP1 and Proteus mirabilis V7. Int. Biodeterior. Biodegradation. 77, 45–50 (2013)

    Article  CAS  Google Scholar 

  40. P. Rebelo, J. G. Pacheco, I. V. Voroshylova, A. Melo, M. N. D. Cordeiro, C. Delerue-Matos, Rational development of molecular imprinted carbon paste electrode for Furazolidone detection: theoretical and experimental approach. Sens. Actuators B Chem. 329, 129112 (2021)

  41. S.M. Babulal, T.W. Chen, S.M. Chen, W.A. Al-Onazi, A.M. Al-Mohaimeed, Manganese molybdenum oxide micro rods adorned porous carbon hybrid electrocatalyst for electrochemical determination of furazolidone in environmental fluids. Catalysts 11(11), 1397 (2021)

    Article  CAS  Google Scholar 

  42. L. S. Duan, L. Zhang, Electrochemical behavior of furazolidone at mulit-walled carbon nanotubes modified glassy carbon electrode and its analytical application. J. Anal. Sci. 05 (2012)

  43. K. Yin, Pyoverdine as a biorecognition element to develop biosensor for the detection of furazolidone. In Design of Novel Biosensors for Optical Sensing and Their Applications in Environmental Analysis. Springer. 25–35 (2020)

  44. S. Sakthinathan, S. Kubendhiran, S.M. Chen, K. Manibalan, M. Govindasamy, P. Tamizhdurai, S.T. Huang, Reduced graphene oxide non-covalent functionalized with zinc tetra phenyl porphyrin nanocomposite for electrochemical detection of dopamine in human serum and rat brain samples. Electroanalysis 28(9), 2126–2135 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Precision Research and Analysis Centre of the National Taipei University of Technology for providing the instrument facilities.

Funding

This research work was supported by the Ministry of Science and Technology of Taiwan (MOST 109–2221-E-027–059 and MOST 110–2221-E-027–041) and the National Taipei University of Technology-University of Science and Technology Beijing Joint Research Program (NTUT-USTB-103-3).

Author information

Authors and Affiliations

Authors

Contributions

The final version of the paper has been approved by all authors.

Corresponding authors

Correspondence to Subramanian Sakthinathan, Te-Wei Chiu or Junsheng Wu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Subramanian Sakthinathan and Junsheng Wu should also be captured as corresponding authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3001 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasu, D., Keyan, A.K., Sakthinathan, S. et al. Enhanced Electrocatalytic Activity of Non-metal-Doped Transition Metal Oxides for an Electrochemical Detection of Furazolidone. Electrocatalysis 13, 348–360 (2022). https://doi.org/10.1007/s12678-022-00715-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00715-9

Keywords

Navigation