Skip to main content
Log in

Uranyl Salen-Type Complex as Co-catalyst for Electrocatalytic Oxidation of Ethanol

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Direct ethanol fuel cells (DEFCs) are considered a viable alternative power source for both stationary and mobile applications. Obstacles to widespread use of DEFCs include the slow kinetics of ethanol electro-oxidation, which has been countered by using Pt-based electrocatalysts. Pt-based electrocatalysts are produced by partially or totally replacing the platinum alloys with other less expensive materials such as transition metal complexes. This study describes the synthesis and characterization of the electrochemical properties of a new uranyl complex, whose molecular structure has been previously elucidated by FTIR, elemental analysis (CHN), and 1H NMR. Its cyclic voltammogram indicates two reversible redox pairs at 0.69/0.56 V (E1/2 = 0.63 V) and 0.85/0.77 V (E1/2 = 0.81 V) vs. RHE, attributed to ligand processes such as two successive oxidations of phenolate to phenoxyl radicals. The use of UO2(3-OMe-t-salcn)H2O as catalyst for ethanol oxidation reaction in acidic media was also investigated via cyclic voltammetry and chronoamperometry. Six PtSn-based catalysts were produced by adjusting the molar ratio of the PtSn:UO2-complex. Direct scanning of the samples indicated that the peak-current density for the 6:1 PtSn/C:[UO2(3-OMe-t-salcn)H2O] catalyst was higher than that for mixed catalysts. Moreover, as compared to the pure PtSn catalyst, 6:1 PtSn/C:[UO2(3-OMe-t-salcn)H2O] exhibited better catalytic activity for ethanol electrooxidation; i.e., it decreased the onset potential during the oxidation of ethanol. Moreover, this catalyst exhibited peak-current densities (j) at 34.53 mA cm−2; i.e., ~ 5.2-fold that of PtSn/C. In addition, chronoamperometry data indicated higher catalytic activity at 0.6 V for PtSn/C:[UO2(3-OMe-t-salcn)H2O]-based catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P.J.S. Maia, J.F. Cruz, F.A. de Freitas, S. de Fátima Freire dos Santos, and E. A. de Souza, Res. Chem. Intermed. 45, 5451 (2019)

  2. L.C. Silva-Junior, G. Maia, R.R. Passos, E.A. De Souza, G.A. Camara, M.J. Giz, Electrochim. Acta 112, 612 (2013)

    Article  CAS  Google Scholar 

  3. I.M. Mendonça, O.A.R.L. Paes, P.J.S. Maia, M.P. Souza, R.A. Almeida, C.C. Silva, S. Duvoisin, F.A. de Freitas, Renew. Energy 130, 103 (2019)

    Article  Google Scholar 

  4. F. Lyu, M. Cao, A. Mahsud, and Q. Zhang, J. Mater. Chem. A (2020).

  5. Z. Zakaria, S.K. Kamarudin, S.N. Timmiati, Appl. Energy 163, 334 (2016)

    Article  CAS  Google Scholar 

  6. F. Vigier, C. Coutanceau, A. Perrard, E.M. Belgsir, C. Lamy, J. Appl. Electrochem. 34, 439 (2004)

    Article  CAS  Google Scholar 

  7. G. Andreadis, P. Tsiakaras, Chem. Eng. Sci. 61, 7497 (2006)

    Article  CAS  Google Scholar 

  8. A. Heinzel, V.M. Barragán, J. Power Sources 84, 70 (1999)

    Article  CAS  Google Scholar 

  9. Y. Wang, S. Zou, and W. Bin Cai, Catalysts 5, 1507 (2015)

    Article  CAS  Google Scholar 

  10. A.O. Neto, M. Linardi, D.M. Dos Anjos, G. Tremiliosi-Filho, E.V. Spinacé, J. Appl. Electrochem. 39, 1153 (2009)

    Article  Google Scholar 

  11. M.C. Gloria, E.A. de Souza, P.J.S. Maia, in Estud. Transdiscipl. Nas Eng. (Ponta Grossa, PR, 2019), pp. 151–167.

  12. E.A. De Souza, M.J. Giz, G.A. Camara, E. Antolini, R.R. Passos, Electrochim. Acta 147, 483 (2014)

    Article  Google Scholar 

  13. P. Maia, E. Medeiros, B. Maria, L. Vega, H. Nunes, and F. A. de Freitas, Chem. Pap. (2017).

  14. E.M. Barbosa, I.S. Costa, P.H.S. de Oliveira, E.B. dos Santos, A.M.B. Silva, P.J.S. Maia, E.A. Souza, Rev. Virtual Quim. 12, 1653 (2020)

    Article  Google Scholar 

  15. K.R. Brownell, C.C.L. Mccrory, C.E.D. Chidsey, R.H. Perry, R.N. Zare, R.M. Waymouth, J. Am. Chem. Soc. 135, 14299 (2013)

    Article  CAS  Google Scholar 

  16. R.D. dos Santos, S. de Fatima Freire dos Santos, F. da Silva Moura, P.J.S. Maia, B.T. da Fonseca, R.H. de Almeida Santos, M.E. Medeiros, F.M. dos Santos Garrido, and A. Casellato, Transit. Met. Chem. 42, 301 (2017).

  17. P.J.S. Maia, I. de Aguiar, M. dos Santos Velloso, D. Zhang, E.R. dos Santos, J.R. de Oliveira, J.C. Junqueira, M. Selke, and R.M. Carlos, J. Photochem. Photobiol. A Chem. 353, 536 (2018).

  18. A. Moghieb, M.C. Correia, L. McElwee-White, Inorganica Chim. Acta 369, 159 (2011)

    Article  CAS  Google Scholar 

  19. S. Gao, X. Yang, S. Liang, Y.H. Wang, H.Y. Zang, Y.G. Li, Inorg. Chem. Commun. 106, 104 (2019)

    Article  CAS  Google Scholar 

  20. Z. Asadi and M.R. Shorkaei, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 105, 344 (2013).

  21. L.A.J. Chrisstoffels, F. de Jong, D.N. Reinhoudt, Chem. - A Eur. J. 6, 1376 (2000)

    Article  CAS  Google Scholar 

  22. A. Dalla Cort, J.I. Miranda Murua, C. Pasquini, M. Pons, and L. Schiaffino, Chem. - A Eur. J. 10, 3301 (2004).

  23. M. Cametti, M. Nissinen, A. Dalla Cort, L. Mandolini, and K. Rissanen, J. Am. Chem. Soc. 127, 3831 (2005).

  24. A. Dalla Cort, C. Pasquini, and L. Schiaffino, Supramol. Chem. 19, 79 (2007).

  25. B.E. Klamm, C.J. Windorff, C. Celis-Barros, M.L. Marsh, and T.E. Albrecht-Schmitt, Inorg. Chem. (2019).

  26. L. de Oliveira, A. dos Santos Poles, M. Balbino, M. Teles de Menezes, J. de Andrade, E. Dockal, H. Tristão, and M. de Oliveira, Sensors 13, 7668 (2013).

  27. L.S. De Oliveira, M.A. Balbino, M.M.T. De Menezes, E.R. Dockal, M.F. De Oliveira, Microchem. J. 110, 374 (2013)

    Article  Google Scholar 

  28. M.F. Muzetti Ribeiro, J.W. da Cruz Júnior, E.R. Dockal, B.R. Mccord, and M.F. de Oliveira, Electroanalysis 28, 320 (2016).

  29. É.N. Oiye, M.F.M. Ribeiro, J.M.T. Katayama, M.C. Tadini, M.A. Balbino, I.C. Eleotério, J. Magalhães, A.S. Castro, R.S.M. Silva, J.W. da Cruz Júnior, E.R. Dockal, and M.F. de Oliveira, Crit. Rev. Anal. Chem. 1 (2019).

  30. Z. Asadi, M. Asadi, F. Dehghani Firuzabadi, R. Yousefi, and M. Jamshidi, J. Iran. Chem. Soc. 11, 423 (2014).

  31. S.Y. Ebrahimipour, I. Sheikhshoaie, J. Castro, M. Dušek, Z. Tohidiyan, V. Eigner, M. Khaleghi, RSC Adv. 5, 95104 (2015)

    Article  CAS  Google Scholar 

  32. F.D. Firuzabadi, Z. Asadi, R. Yousefi, F.D. Firuzabadi, Z. Asadi, R. Yousefi, Bull. Chem. Soc. Ethiop. 32, 89 (2018)

    Article  CAS  Google Scholar 

  33. S.Y. Ebrahimipour, M. Mohamadi, M. Torkzadeh Mahani, J. Simpson, J.T. Mague, and I. Sheikhshoaei, Eur. J. Med. Chem. 140, 172 (2017).

  34. K. Takao, Y. Ikeda, Inorg. Chem. 46, 1550 (2007)

    Article  CAS  Google Scholar 

  35. N.L. Bell, B. Shaw, P.L. Arnold, J.B. Love, J. Am. Chem. Soc. 140, 3378 (2018)

    Article  CAS  Google Scholar 

  36. L. dos S. Mello, J.W. da Cruz, D.H. Bucalon, S. Romera, M.P. dos Santos, L.M. Lião, L. Vizotto, F.T. Martins, and E.R. Dockal, J. Mol. Struct. 1228, 129656 (2021).

  37. M.S. Bharara, K. Strawbridge, J.Z. Vilsek, T.H. Bray, A.E.V. Gorden, Inorg. Chem. 46, 8309 (2007)

    Article  CAS  Google Scholar 

  38. I. Majumder, S. Chatterjee, R.C. Fischer, S.K. Neogi, F.A. Mautner, T. Chattopadhyay, Inorganica Chim. Acta 462, 112 (2017)

    Article  CAS  Google Scholar 

  39. D. Kumar, R.P. Bhat, S.D. Samant, N.M. Gupta, Catal. Commun. 6, 627 (2005)

    Article  CAS  Google Scholar 

  40. M.F.M. Ribeiro, E.N. Oiye, J.M.T. Katayama, J.W.C. Junior, E.R. Dockal, M. Firmino de Oliveira, Brazilian J. Forensic Sci. Med. Law Bioeth. 9, 440 (2020)

    Article  Google Scholar 

  41. X. Liu, C. Manzur, N. Novoa, S. Celedón, D. Carrillo, J.R. Hamon, Coord. Chem. Rev. 357, 144 (2018)

    Article  CAS  Google Scholar 

  42. K. Herasymchuk, L. Chiang, C.E. Hayes, M.L. Brown, J.S. Ovens, B.O. Patrick, D.B. Leznoff, T. Storr, Dalt. Trans. 45, 12576 (2016)

    Article  CAS  Google Scholar 

  43. H.C. Hardwick, D.S. Royal, M. Helliwell, S.J.A. Pope, L. Ashton, R. Goodacre, and C. a Sharrad, Dalt. Trans. 40, 5939 (2011).

  44. V.T. Kasumov and F. Köksal, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 61, 225 (2005).

  45. F. Thomas, O. Jarjayes, C. Duboc, C. Philouze, E. Saint-Aman, and J.L. Pierre, Dalt. Trans. 2662 (2004).

  46. L.R.F. Allen, J. Bard, Electrochemical Methods: Fundamentals and Applications, 2nd ed. (2001).

  47. E. Laviron, J. Electroanal. Chem. 101, 19 (1979)

    Article  CAS  Google Scholar 

  48. D. Tomczyk, W. Bukowski, K. Bester, Electrochim. Acta 267, 181 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Programa de Pós-Graduação em Ciência e Tecnologia para Recursos Amazônicos (PPGCTRA–UFAM), Programa de Pós-Graduação em Nanociência, Processos e Materiais Avançados (PPGNPMat–UFSC), Fundação de Amparo à Pesquisa do Estado do Amazonas–FAPEAM (process no. 005/2019), PROPESP/UFAM-CNPq (process no. 041/2016 and 008/2018), Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina–FAPESC (I. V. de F.—Grant no. 21/2021), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES), and Conselho Nacional de Desenvolvimento Científico–CNPq.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elson Almeida Souza or Paulo José Sousa Maia.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 215 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbosa, E.M., Souza, K.S., de Oliveira, P.S. et al. Uranyl Salen-Type Complex as Co-catalyst for Electrocatalytic Oxidation of Ethanol. Electrocatalysis 13, 91–100 (2022). https://doi.org/10.1007/s12678-021-00697-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-021-00697-0

Keywords

Navigation