Skip to main content
Log in

Facile Synthesis of a Carbon-Encapsulated Pd Catalyst for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The key to popularizing proton exchange fuel cells is developing highly active, stable, and cost-effective catalysts for oxygen reduction reaction. Pd is considered as an alternative to Pt due to its high tolerance to poisoning and electronic similarity with Pt, which is a robust but expensive catalyst. However, its vulnerability to dissolving in acidic media prevents the use of Pd as an oxygen reduction reaction catalyst. In this study, a facile synthesis method was developed to prepare a carbon-encapsulated Pd catalyst using aniline. The oxidative polymerization of aniline with a Pd precursor formed Pd nanoparticles embedded in a rod-shaped polyaniline matrix. The polyaniline matrix was carbonized using heat treatment, which then acted as a source of N-containing carbon layer that protects Pd nanoparticles from dissolution and improves oxygen reduction reaction activity. The stability and oxygen reduction reaction activity of the synthesized Pd catalyst were strongly dependent on the heat treatment temperature. The Pd catalysts heat-treated at 300 °C and 500 °C exhibited improved activity and stability as compared to commercial Pd/C. We envision that this method is suitable for mass production of active and stable oxygen reduction reaction catalysts in proton exchange fuel cells.

Schematic diagram showing a synthesis process and the HR-TEM image of Pd nanoparticle encapsulated by carbon shell

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Larminie, A. Dicks, Fuel Cell System Explained, 2nd edn. (Wiley, England, 2000)

    Google Scholar 

  2. H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B-Environ. 56, 9–35 (2005).

    Article  CAS  Google Scholar 

  3. M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116, 3594–3657 (2016).

    Article  CAS  Google Scholar 

  4. H. Tsuchiya, O. Kobayashi, Mass production of PEM fuel cell by learning curve. Int. J. Hydrog. Energy 29, 985–990 (2004).

  5. D. Banham, S. Ye, K. Pei, J. Ozaki, T. Kishimoto, Y. Imashiro, A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. J. Power Sources 285, 334–348 (2015).

    Article  CAS  Google Scholar 

  6. R. Othman, A.L. Dicks, Z. Zhu, Non precious metal catalysts for the PEM fuel cell cathode. Int. J. Hydrog. Energy 37, 357–372 (2012).

    Article  CAS  Google Scholar 

  7. H. Lee, M.J. Kim, T. Lim, Y.-E. Sung, H.-J. Kim, H.-N. Lee, O.J. Kwon, Y.-H. Cho, A facile synthetic strategy for iron, aniline-based non-precious metal catalysts for polymer electrolyte membrane fuel cells. Sci. Rep. 7, 5396 (2017).

  8. E. Antolini, Palladium in fuel cell catalysis. Energy Environ. Sci. 2, 915–931 (2009).

    Article  CAS  Google Scholar 

  9. D.C. Papageorgopoulos, M. Keijzer, J.B.J. Veldhuis, F.A. de Bruijn, CO tolerance of Pd-rich platinum palladium carbon-supported electrocatalysts. J. Electrochem. Soc. 149, A1400–A1404 (2002).

    Article  CAS  Google Scholar 

  10. J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jónsson, Origin of the overpotential for oxygen reduction reaction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  11. E. Pizzutilo, S. Geiger, S.J. Freakley, A. Mingers, S. Cherevko, G.J. Hutchings, K.J.J. Mayrhofer, Palladium electrodissolution from model surfaces and nanoparticles. Electrochim. Acta 229, 467–477 (2017).

    Article  CAS  Google Scholar 

  12. J.J. Salvador-Pascual, S. Citalán-Cigarroa, O. Solorza-Feria, Kinetics of oxygen reduction reaction on nanosized Pd electrocatalyst in acid media. J. Power Sources 172, 229–234 (2007).

    Article  CAS  Google Scholar 

  13. J. Wu, X.Z. Yuan, J.J. Martin, H. Wang, J. Zhang, J. Shen, S. Wu, W. Merida, A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J. Power Sources 184, 104–119 (2008).

    Article  CAS  Google Scholar 

  14. E. Antolini, S.C. Zignani, S.F. Santos, E.R. Gonzalez, Palladium-based electrodes: a way to reduce platinum content in polymer electrolyte membrane fuel cells. Electrochim. Acta 56, 2299–2305 (2011).

    Article  CAS  Google Scholar 

  15. E. Antolini, Alloy vs. intermetallic compounds: effect of the ordering on the electrocatalytic activity for oxygen reduction and the stability of low temperature fuel cell catalysts. Appl. Catal. B-Environ. 217, 201–213 (2017).

    Article  CAS  Google Scholar 

  16. J.N. Tiwari, W.G. Lee, S. Sultan, M. Yousuf, A.M. Harzandi, V. Vij, K.S. Kim, High-affinity-assisted nanoscale alloys as remarkable bifunctional catalyst for alcohol oxidation and oxygen reduction reactions. ACS Nano 11, 7729–7735 (2017).

    Article  CAS  Google Scholar 

  17. L. Xiao, L. Zhuang, Y. Liu, J. Lu, H.D. Abruña, Activating Pd by morphology tailoring for oxygen reduction. J. Am. Chem. Soc. 131, 602–608 (2009).

    Article  CAS  Google Scholar 

  18. Z. Yang, Y. Ling, Y. Zhang, G. Xu, High performance palladium supported on nanoporous carbon under anhydrous condition. Sci. Rep. 6, 36521 (2016).

  19. T. Mittermeier, A. Weiß, H.A. Gasteiger, F. Hasché, Monometallic palladium for oxygen reduction in PEM fuel cells: particle-size effect, reaction mechanism, and voltage cycling stability. J. Electrochem. Soc. 164, F1081–F1089 (2017).

    Article  CAS  Google Scholar 

  20. M. Wang, X. Qin, K. Jiang, Y. Dong, M. Shao, W.-B. Cai, Electrocatalytic activities of oxygen reduction reaction on Pd/C and Pd-B/C catalysts. J. Phys. Chem. C 121, 3416–3423 (2017).

    Article  CAS  Google Scholar 

  21. S. Takenaka, H. Miyamoto, Y. Utsunomiya, H. Matsune, M. Kishida, Catalytic activity of highly durable Pt/CNT catalysts covered with hydrophobic silica layers for the oxygen reduction reaction in PEFCs. J. Phys. Chem. C 118, 774–783 (2014).

    Article  CAS  Google Scholar 

  22. Y. Nie, S. Chen, W. Ding, X. Xie, Y. Zhang, Z. Wei, Pt/C trapped in activated graphitic carbon layers as a highly durable electrocatalyst for the oxygen reduction reaction. Chem. Commun. 50, 15431–15434 (2014).

    Article  CAS  Google Scholar 

  23. X. Tong, J. Zhang, G. Zhang, Q. Wei, R. Chenitz, J.P. Claverie, S. Sun, Ultrathin carbon-coated Pt/carbon nanotubes: a highly durable electrocatalyst for oxygen reduction. Chem. Mater. 29, 9579–9587 (2017).

    Article  CAS  Google Scholar 

  24. J. Tang, J. Liu, N.L. Torad, T. Kimura, Y. Yamauchi, Tailored design of functional nanoporous carbon materials toward fuel cell applications. Nano Today 9, 305–323 (2014).

    Article  CAS  Google Scholar 

  25. L. Guo, W.-J. Jiang, Y. Zhang, J.-S. Hu, Z.-D. Wei, L.-J. Wan, Embedding Pt nanocrystals in N-doped porous carbon/carbon nanotubes towards highly stable electrocatalysts for the oxygen reduction reaction. ACS Catal. 5, 2903–2909 (2015).

    Article  CAS  Google Scholar 

  26. H. Lee, Y.-E. Sung, I. Choi, T. Lim, O.J. Kwon, Novel synthesis of highly durable and active Pt catalyst encapsulated in nitrogen containing carbon for polymer electrolyte membrane fuel cell. J. Power Sources 362, 228–235 (2017).

    Article  CAS  Google Scholar 

  27. Q. Zhang, X. Yu, Y. Ling, W. Cai, Z. Yang, Ultrathin nitrogen doped carbon layer stabilized Pt electrocatalyst supported on N-doped carbon nanotubes. Int. J. Hydrog. Energy 42, 10354–10362 (2017).

    Article  CAS  Google Scholar 

  28. A. Drelinkiewicz, M. Hasik, M. Kloc, Pd-PANI: preparation and catalytic properties. Synth. Met. 102, 1307–1308 (1999).

    Article  CAS  Google Scholar 

  29. K. Mallick, M.J. Witcomb, M.S. Scurrell, Formation of palladium nanoparticles in poly (o-methoxyaniline) macromolecule fibers: An in-situ chemical synthesis method. Eur. Phys. J. E 19, 149–154 (2006).

    Article  CAS  Google Scholar 

  30. K. Mallick, M. Witcomb, M. Scurrell, Palladium-polyaniline and palladium-polyaniline derivative composite materials. Platin. Met. Rev. 51, 3–15 (2007)

    Article  CAS  Google Scholar 

  31. S. Dutt, R. Kumar, P.F. Siril, Green synthesis of a palladium-polyaniline nanocomposite for green Suzuki-Miyaura coupling reactions. RSC Adv. 5, 33786–33791 (2015).

    Article  CAS  Google Scholar 

  32. H. Liu, X.B. Hu, J.Y. Wang, R.I. Boughton, Structure, conductivity, and thermopower of crystalline polyaniline synthesized by the ultrasonic irradiation polymerization method. Macromolecules 35, 9414–9419 (2002).

    Article  CAS  Google Scholar 

  33. G.M. Veith, A.R. Lupini, L. Baggetto, J.F. Browning, J.K. Keum, A. Villa, L. Prati, A.B. Papandrew, G.A. Goenaga, D.R. Mullins, S.E. Bullock, N.J. Dudney, Evidence for the formation of nitrogen-rich platinum and palladium nitride nanoparticles. Chem. Mater. 25, 4936–4945 (2013).

    Article  CAS  Google Scholar 

  34. O.-H. Kim, Y.-H. Cho, D.Y. Chung, M.J. Kim, J.M. Yoo, J.E. Park, H. Choe, Y.-E. Sung, Facile and gram-scale synthesis of metal-free catalysts: toward realistic applications for fuel cells. Sci. Rep. 5, 8376 (2015).

  35. A. Zalineeva, S. Baranton, C. Coutanceau, G. Jerkiewicz, Electrochemical behavior of unsupported shaped palladium nanoparticles. Langmuir 31, 1605–1609 (2015).

    Article  Google Scholar 

  36. A. Zalineeva, S. Baranton, C. Coutanceau, G. Jerkiewicz, Octahedral palladium nanoparticles as excellent hosts for electrochemically adsorbed and absorbed hydrogen. Sci. Adv. 3, e1600542 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Incheon National University Research Grant in 2016.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taeho Lim or Oh Joong Kwon.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, J., Kim, Y., Karuppnan, M. et al. Facile Synthesis of a Carbon-Encapsulated Pd Catalyst for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. Electrocatalysis 11, 77–85 (2020). https://doi.org/10.1007/s12678-019-00567-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-019-00567-w

Keywords

Navigation