Skip to main content
Log in

Electrochemical Observation of High Oxophilicity and its Effect on Oxygen Reduction Reaction Activity of Au Clusters Mass-Selectively Deposited on Glassy Carbon

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The measurement procedure of oxophilicity and electrocatalytic activity for oxygen reduction reaction (ORR) on size-selected Au clusters was developed and applied. Mass-selected Au9 clusters were deposited on a glassy carbon substrate under ultrahigh vacuum (UHV) conditions, and the model electrode was transferred to an electrochemical cell with the rotating disk electrode (RDE) configuration. Cyclic voltammetry exhibited a significantly lower oxide-reduction peak potential of the Au clusters than that of bulk Au in the first cycle, thus confirming the exceptionally higher oxophilicities for the former. After performing cyclic voltammetry with an upper limit potential of 1.8 V versus a reversible hydrogen electrode, the ORR activity of the Au clusters was lower than that of bulk Au and bulk Pt. This result was partially ascribed to aggregations of Au clusters during the potential cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.A. Gasteiger, J.E. Panels, S.G. Yan, Dependence of PEM fuel cell performance on catalyst loading. J. Power Sources 127(1–2), 162–171 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.013

    Article  CAS  Google Scholar 

  2. J.K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108(46), 17886–17892 (2004). https://doi.org/10.1021/jp047349j

    Article  CAS  Google Scholar 

  3. T.H. Yu, T. Hofmann, Y. Sha, B.V. Merinov, D.J. Myers, C. Heske, W.A. Goddard, Finding correlations of the oxygen reduction reaction activity of transition metal catalysts with parameters obtained from quantum mechanics. J. Phys. Chem. C 117(50), 26598–26607 (2013). https://doi.org/10.1021/jp4071554

    Article  CAS  Google Scholar 

  4. T. Toda, H. Igarashi, M. Watanabe, Role of electronic property of Pt and Pt alloys on electrocatalytic reduction of oxygen. J. Electrochem. Soc. 145(12), 4185–4188 (1998). https://doi.org/10.1149/1.1838934

    Article  CAS  Google Scholar 

  5. V.R. Stamenkovic, B. Fowler, B.S. Mun, G.F. Wang, P.N. Ross, C.A. Lucas, N.M. Markovic, Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability. Science 315(5811), 493–497 (2007). https://doi.org/10.1126/science.1135941

    Article  CAS  PubMed  Google Scholar 

  6. C.H. Cui, L. Gan, H.H. Li, S.H. Yu, M. Heggen, P. Strasser, Octahedral PtNi nanoparticle catalysts: exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 12(11), 5885–5889 (2012). https://doi.org/10.1021/nl3032795

    Article  CAS  PubMed  Google Scholar 

  7. X.Q. Huang, Z.P. Zhao, L. Cao, Y. Chen, E.B. Zhu, Z.Y. Lin, M.F. Li, A.M. Yan, A. Zettl, Y.M. Wang, X.F. Duan, T. Mueller, Y. Huang, High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 348(6240), 1230–1234 (2015). https://doi.org/10.1126/science.aaa8765

    Article  CAS  PubMed  Google Scholar 

  8. J. Zhang, F.H.B. Lima, M.H. Shao, K. Sasaki, J.X. Wang, J. Hanson, R.R. Adzic, Platinum monolayer on nonnoble metal–noble metal core–shell nanoparticle electrocatalysts for O2 reduction. J. Phys. Chem. B 109(48), 22701–22704 (2005). https://doi.org/10.1021/jp055634c

    Article  CAS  PubMed  Google Scholar 

  9. M.F. Li, Z.P. Zhao, T. Cheng, A. Fortunelli, C.Y. Chen, R. Yu, Q.H. Zhang, L. Gu, B.V. Merinov, Z.Y. Lin, E.B. Zhu, T. Yu, Q.Y. Jia, J.H. Guo, L. Zhang, W.A. Goddard, Y. Huang, X.F. Duan, Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354(6318), 1414–1419 (2016). https://doi.org/10.1126/science.aaf9050

    Article  CAS  PubMed  Google Scholar 

  10. J. Snyder, T. Fujita, M.W. Chen, J. Erlebacher, Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts. Nat. Mater. 9(11), 904–907 (2010). https://doi.org/10.1038/nmat2878

    Article  CAS  PubMed  Google Scholar 

  11. G.R. Zhang, M. Munoz, B.J.M. Etzold, Accelerating oxygen-reduction catalysts through preventing poisoning with non-reactive species by using hydrophobic ionic liquids. Angew. Chem.-Int. Edit. 55(6), 2257–2261 (2016). https://doi.org/10.1002/anie.201508338

    Article  CAS  Google Scholar 

  12. K. Huang, T. Song, O. Morales-Collazo, H. Jia, J.F. Brennecke, Enhancing Pt/C catalysts for the oxygen reduction reaction with protic ionic liquids: the effect of anion structure. J. Electrochem. Soc. 164(13), F1448–F1459 (2017). https://doi.org/10.1149/2.1071713jes

    Article  CAS  Google Scholar 

  13. N. Nonoyama, S. Okazaki, A.Z. Weber, Y. Ikogi, T. Yoshida, Analysis of oxygen-transport diffusion resistance in proton-exchange-membrane fuel cells. J. Electrochem. Soc. 158(4), B416–B423 (2011). https://doi.org/10.1149/1.3546038

    Article  CAS  Google Scholar 

  14. R. Jinnouchi, K. Kudo, N. Kitano, Y. Morimoto, Molecular dynamics simulations on O2 permeation through nafion ionomer on platinum surface. Electrochim. Acta 188, 767–776 (2016). https://doi.org/10.1016/j.electacta.2015.12.031

    Article  CAS  Google Scholar 

  15. A. Kongkanand, M.F. Mathias, The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J. Phys. Chem. Lett. 7(7), 1127–1137 (2016). https://doi.org/10.1021/acs.jpclett.6b00216

    Article  CAS  PubMed  Google Scholar 

  16. J.L. Zhang, M.B. Vukmirovic, Y. Xu, M. Mavrikakis, R.R. Adzic, Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem.-Int. Edit. 44(14), 2132–2135 (2005). https://doi.org/10.1002/anie.200462335

    Article  CAS  Google Scholar 

  17. K. Shinozaki, Y. Morimoto, B.S. Pivovar, S.S. Kocha, Re-examination of the Pt particle size effect on the oxygen reduction reaction for ultrathin uniform Pt/C catalyst layers without influence from Nafion. Electrochim. Acta 213, 783–790 (2016). https://doi.org/10.1016/j.electacta.2016.08.001

    Article  CAS  Google Scholar 

  18. H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Applied Catalysis B-Environmental 56(1–2), 9–35 (2005). https://doi.org/10.1016/j.apcatb.2004.06.021

    Article  CAS  Google Scholar 

  19. F.J. Perez-Alonso, D.N. McCarthy, A. Nierhoff, P. Hernandez-Fernandez, C. Strebel, I.E.L. Stephens, J.H. Nielsen, I. Chorkendorff, The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles. Angew. Chem.-Int. Edit. 51(19), 4641–4643 (2012). https://doi.org/10.1002/anie.201200586

    Article  CAS  Google Scholar 

  20. G.A. Tritsaris, J. Greeley, J. Rossmeisl, J.K. Norskov, Atomic-scale modeling of particle size effects for the oxygen reduction reaction on Pt. Catal. Lett. 141(7), 909–913 (2011). https://doi.org/10.1007/s10562-011-0637-8

    Article  CAS  Google Scholar 

  21. M.H. Shao, A. Peles, K. Shoemaker, Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett. 11(9), 3714–3719 (2011). https://doi.org/10.1021/nl2017459

    Article  CAS  PubMed  Google Scholar 

  22. M. Nesselberger, M. Roefzaad, R.F. Hamou, P.U. Biedermann, F.F. Schweinberger, S. Kunz, K. Schloegl, G.K.H. Wiberg, S. Ashton, U. Heiz, K.J.J. Mayrhofer, M. Arenz, The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. Nat. Mater. 12(10), 919–924 (2013). https://doi.org/10.1038/nmat3712

    Article  CAS  PubMed  Google Scholar 

  23. E.F. Holby, W.C. Sheng, Y. Shao-Horn, D. Morgan, Pt nanoparticle stability in PEM fuel cells: influence of particle size distribution and crossover hydrogen. Energy Environ. Sci. 2(8), 865–871 (2009). https://doi.org/10.1039/b821622n

    Article  CAS  Google Scholar 

  24. K. Matsutani, K. Hayakawa, T. Tada, Effect of particle size of platinum and platinum-cobalt catalysts on stability against load cycling. Platin. Met. Rev. 54(4), 223–232 (2010). https://doi.org/10.1595/147106710x523698

    Article  CAS  Google Scholar 

  25. S. Garbarino, A. Pereira, C. Hamel, E. Irissou, M. Chaker, D. Guay, Effect of size on the electrochemical stability of Pt nanoparticles deposited on gold substrate. J. Phys. Chem. C 114(7), 2980–2988 (2010). https://doi.org/10.1021/jp908724k

    Article  CAS  Google Scholar 

  26. Z. Yang, S. Ball, D. Condit, M. Gummalla, Systematic study on the impact of Pt particle size and operating conditions on PEMFC cathode catalyst durability. J. Electrochem. Soc. 158(11), B1439–B1445 (2011). https://doi.org/10.1149/2.081111jes

    Article  CAS  Google Scholar 

  27. Z. Xu, H.M. Zhang, H.X. Zhong, Q.H. Lu, Y.F. Wang, D.S. Su, Effect of particle size on the activity and durability of the Pt/C electrocatalyst for proton exchange membrane fuel cells. Applied Catalysis B-Environmental 111, 264–270 (2012). https://doi.org/10.1016/j.apcatb.2011.10.007

    Article  CAS  Google Scholar 

  28. K. Yu, D.J. Groom, X.P. Wang, Z.W. Yang, M. Gummalla, S.C. Ball, D.J. Myers, P.J. Ferreira, Degradation mechanisms of platinum nanoparticle catalysts in proton exchange membrane fuel cells: the role of particle size. Chem. Mater. 26(19), 5540–5548 (2014). https://doi.org/10.1021/cm501867c

    Article  CAS  Google Scholar 

  29. C. Tsai, F. Abild-Pedersen, J.K. Norskov, Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett. 14(3), 1381–1387 (2014). https://doi.org/10.1021/nl404444k

    Article  CAS  PubMed  Google Scholar 

  30. S.L. Zhao, Y. Wang, J.C. Dong, C.T. He, H.J. Yin, P.F. An, K. Zhao, X.F. Zhang, C. Gao, L.J. Zhang, J.W. Lv, J.X. Wang, J.Q. Zhang, A.M. Khattak, N.A. Khan, Z.X. Wei, J. Zhang, S.Q. Liu, H.J. Zhao, Z.Y. Tang, Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nature Energy 1, 1–10 (2016). https://doi.org/10.1038/nenergy.2016.184

    Article  CAS  Google Scholar 

  31. Yin, H.J., Zhao, S.L., Zhao, K., Muqsit, A., Tang, H.J., Chang, L., Zhao, H.J., Gao, Y., Tang, Z.Y.: Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun.6 (2015). https://doi.org/10.1038/ncomms7430

  32. S.L. Zhao, H.J. Yin, L. Du, L.C. He, K. Zhao, L. Chang, G.P. Yin, H.J. Zhao, S.Q. Liu, Z.Y. Tang, Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 8(12), 12660–12668 (2014). https://doi.org/10.1021/nn505582e

    Article  CAS  PubMed  Google Scholar 

  33. X.X. Wang, J.D. Yang, H.J. Yin, R. Song, Z.Y. Tang, “Raisin Bun”-like nanocomposites of palladium clusters and porphyrin for superior formic acid oxidation. Adv. Mater. 25(19), 2728–2732 (2013). https://doi.org/10.1002/adma.201205168

    Article  CAS  PubMed  Google Scholar 

  34. M. Haruta, Size- and support-dependency in the catalysis of gold. Catal. Today 36(1), 153–166 (1997). https://doi.org/10.1016/s0920-5861(96)00208-8

    Article  CAS  Google Scholar 

  35. S. Yamazoe, K. Koyasu, T. Tsukuda, Nonscalable oxidation catalysis of gold clusters. Acc. Chem. Res. 47(3), 816–824 (2014). https://doi.org/10.1021/ar400209a

    Article  CAS  PubMed  Google Scholar 

  36. J. Greeley, J. Rossmeisl, A. Hellman, J.K. Norskov, Theoretical trends in particle size effects for the oxygen reduction reaction. Z. Physik. Chem.-Int. J. Res. Phys. Chem. Chem. Phys. 221(9–10), 1209–1220 (2007). https://doi.org/10.1524/zpch.2007.221.9-10.1209

    Article  CAS  Google Scholar 

  37. W. Chen, S. Chen, Oxygen electroreduction catalyzed by gold nanoclusters: strong core size effects. Angew. Chem. Int. Ed. 48(24), 4386–4389 (2009). https://doi.org/10.1002/anie.200901185

    Article  CAS  Google Scholar 

  38. C. Jeyabharathi, S.S. Kumar, G.V.M. Kiruthika, K.L.N. Phani, Aqueous CTAB-assisted electrodeposition of gold atomic clusters and their oxygen reduction electrocatalytic activity in acid solutions. Angew. Chem.-Int. Edit. 49(16), 2925–2928 (2010). https://doi.org/10.1002/anie.200905614

    Article  CAS  Google Scholar 

  39. L.K. Wang, Z.H. Tang, W. Yan, H.Y. Yang, Q.N. Wang, S.W. Chen, Porous carbon-supported gold nanoparticles for oxygen reduction reaction: effects of nanoparticle size. ACS Appl. Mater. Interfaces 8(32), 20635–20641 (2016). https://doi.org/10.1021/acsami.6b02223

    Article  CAS  PubMed  Google Scholar 

  40. S.J. Xu, P.Y. Wu, Facile and green synthesis of a surfactant-free Au clusters/reduced graphene oxide composite as an efficient electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 2(33), 13682–13690 (2014). https://doi.org/10.1039/c4ta01417k

    Article  CAS  Google Scholar 

  41. T. Inasaki, S. Kobayashi, Particle size effects of gold on the kinetics of the oxygen reduction at chemically prepared Au/C catalysts. Electrochim. Acta 54(21), 4893–4897 (2009). https://doi.org/10.1016/j.electacta.2009.02.075

    Article  CAS  Google Scholar 

  42. J.H. Shim, J. Kim, C. Lee, Y. Lee, Electrocatalytic activity of gold and gold nanoparticles improved by electrochemical pretreatment. J. Phys. Chem. C 115(1), 305–309 (2011). https://doi.org/10.1021/jp1067507

    Article  CAS  Google Scholar 

  43. M.J. Rodriguez-Vazquez, M.C. Blanco, R. Lourido, C. Vazquez-Vazquez, E. Pastor, G.A. Planes, J. Rivas, M.A. Lopez-Quintela, Synthesis of atomic gold clusters with strong electrocatalytic activities. Langmuir 24(21), 12690–12694 (2008). https://doi.org/10.1021/la8018474

    Article  CAS  Google Scholar 

  44. I. Yagi, T. Ishida, K. Uosaki, Electrocatalytic reduction of oxygen to water at Au nanoclusters vacuum-evaporated on boron-doped diamond in acidic solution. Electrochem. Commun. 6(8), 773–779 (2004). https://doi.org/10.1016/j.elecom.2004.05.025

    Article  CAS  Google Scholar 

  45. H.J. Yin, H.J. Tang, D. Wang, Y. Gao, Z.Y. Tang, Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction. ACS Nano 6(9), 8288–8297 (2012). https://doi.org/10.1021/nn302984x

    Article  CAS  PubMed  Google Scholar 

  46. R.J.C. Batista, M.S.C. Mazzoni, H. Chacham, First-principles investigation of electrochemical properties of gold nanoparticles. Nanotechnology 21(6), 8 (2010). https://doi.org/10.1088/0957-4484/21/6/065705

    Article  CAS  Google Scholar 

  47. Y. Watanabe, N. Isomura, A new experimental setup for high-pressure catalytic activity measurements on surface deposited mass-selected Pt clusters. J. Vac. Sci. Technol. A 27(5), 1153–1158 (2009). https://doi.org/10.1116/1.3179160

    Article  CAS  Google Scholar 

  48. Y. Watanabe, X.Y. Wu, H. Hirata, N. Isomura, Size-dependent catalytic activity and geometries of size-selected Pt clusters on TiO2(110) surfaces. Catal. Sci. Technol. 1(8), 1490–1495 (2011). https://doi.org/10.1039/c1cy00204j

    Article  CAS  Google Scholar 

  49. S. Proch, M. Wirth, H.S. White, S.L. Anderson, Strong effects of cluster size and air exposure on oxygen reduction and carbon oxidation electrocatalysis by size-selected Pt n (n ≤ 11) on glassy carbon electrodes. J. Am. Chem. Soc. 135(8), 3073–3086 (2013). https://doi.org/10.1021/ja309868z

    Article  CAS  PubMed  Google Scholar 

  50. M.D. Kane, F.S. Roberts, S.L. Anderson, Mass-selected supported cluster catalysts: size effects on CO oxidation activity, electronic structure, and thermal stability of Pd n /alumina (n ≤ 30) model catalysts. Int. J. Mass Spectrom. 370, 1–15 (2014). https://doi.org/10.1016/j.ijms.2014.06.018

    Article  CAS  Google Scholar 

  51. A. von Weber, S.L. Anderson, Electrocatalysis by mass-selected Pt-n clusters. Acc. Chem. Res. 49(11), 2632–2639 (2016). https://doi.org/10.1021/acs.accounts.6b00387

    Article  CAS  Google Scholar 

  52. F.F. Schweinberger, M.J. Berr, M. Doblinger, C. Wolff, K.E. Sanwald, A.S. Crampton, C.J. Ridge, F. Jackel, J. Feldmann, M. Tschurl, U. Heiz, Cluster size effects in the photocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 135(36), 13262–13265 (2013). https://doi.org/10.1021/ja406070q

    Article  CAS  PubMed  Google Scholar 

  53. L. Shi, L.Y. Zhu, J. Guo, L.J. Zhang, Y.N. Shi, Y. Zhang, K. Hou, Y.L. Zheng, Y.F. Zhu, J.W. Lv, S.Q. Liu, Z.Y. Tang, Self-assembly of chiral gold clusters into crystalline nanocubes of exceptional optical activity. Angew. Chem.-Int. Edit. 56(48), 15397–15401 (2017). https://doi.org/10.1002/anie.201709827

    Article  CAS  Google Scholar 

  54. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (Wiley, Hoboken, 2001), pp. 339–341

    Google Scholar 

  55. A. Bjorling, E. Ahlberg, J.M. Feliu, Kinetics of surface modification induced by submonolayer electrochemical oxygen adsorption on Pt(1 1 1). Electrochem. Commun. 12(3), 359–361 (2010). https://doi.org/10.1016/j.elecom.2009.12.034

    Article  CAS  Google Scholar 

  56. B.D. Cahan, H.M. Villullas, The hanging meniscus rotating-disk (HMRD). J. Electroanal. Chem. 307(1–2), 263–268 (1991). https://doi.org/10.1016/0022-0728(91)85553-2

    Article  CAS  Google Scholar 

  57. J.C. Fuggle, E. Kallne, L.M. Watson, D.J. Fabian, Electronic-structure of aluminum and aluminum-noble-metal alloys studied by soft-X-ray and X-ray photoelectron spectroscopies. Phys. Rev. B 16(2), 750–761 (1977). https://doi.org/10.1103/PhysRevB.16.750

    Article  CAS  Google Scholar 

  58. S. Peters, S. Peredkov, M. Neeb, W. Eberhardt, M. Al-Hada, Size-dependent XPS spectra of small supported Au-clusters. Surf. Sci. 608, 129–134 (2013). https://doi.org/10.1016/j.susc.2012.09.024

    Article  CAS  Google Scholar 

  59. W.E. Kaden, T.P. Wu, W.A. Kunkel, S.L. Anderson, Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 326(5954), 826–829 (2009). https://doi.org/10.1126/science.1180297

    Article  CAS  PubMed  Google Scholar 

  60. G.K. Wertheim, S.B. Dicenzo, Cluster growth and core-electron binding-energies in supported metal-clusters. Phys. Rev. B 37(2), 844–847 (1988). https://doi.org/10.1103/PhysRevB.37.844

    Article  CAS  Google Scholar 

  61. A. Sarapuu, M. Nurmik, H. Mandar, A. Rosental, T. Laaksonen, K. Kontturi, D.J. Schiffrin, K. Tammeveski, Electrochemical reduction of oxygen on nanostructured gold electrodes. J. Electroanal. Chem. 612(1), 78–86 (2008). https://doi.org/10.1016/j.jelechem.2007.09.016

    Article  CAS  Google Scholar 

  62. C.A. Reiser, L. Bregoli, T.W. Patterson, J.S. Yi, J.D.L. Yang, M.L. Perry, T.D. Jarvi, A reverse-current decay mechanism for fuel cells. Electrochem Solid-State Lett. 8(6), A273–A276 (2005). https://doi.org/10.1149/1.1896466

    Article  CAS  Google Scholar 

  63. D. Matthey, J.G. Wang, S. Wendt, J. Matthiesen, R. Schaub, E. Laegsgaard, B. Hammer, F. Besenbacher, Enhanced bonding of gold nanoparticles on oxidized TiO2(110). Science 315(5819), 1692–1696 (2007). https://doi.org/10.1126/science.1135752

    Article  CAS  PubMed  Google Scholar 

  64. K. Kodama, R. Jinnouchi, N. Takahashi, H. Murata, Y. Morimoto, Activities and stabilities of Au-modified stepped-Pt single-crystal electrodes as model cathode catalysts in polymer electrolyte fuel cells. J. Am. Chem. Soc. 138(12), 4194–4200 (2016). https://doi.org/10.1021/jacs.6b00359

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kensaku Kodama.

Electronic Supplementary Material

ESM 1

(DOCX 60kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kodama, K., Beniya, A., Isomura, N. et al. Electrochemical Observation of High Oxophilicity and its Effect on Oxygen Reduction Reaction Activity of Au Clusters Mass-Selectively Deposited on Glassy Carbon. Electrocatalysis 9, 471–479 (2018). https://doi.org/10.1007/s12678-018-0464-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-018-0464-4

Keywords

Navigation