Skip to main content

Advertisement

Log in

Au Cluster-derived Electrocatalysts for CO2 Reduction

  • Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Metal clusters often exhibit superior chemical, electronic, and geometrical properties and can show exciting catalytic performance. The catalytic behaviour of the clusters is strongly affected by their size and composition, offering unique opportunities to fine-tune such materials for a specific application. In this study, atomically precise [Au6(dppp)4](NO3)2, [Au9(PPh3)8](NO3)3, [Au13(dppe)5Cl2]Cl3 and Au101(PPPh3)21Cl5 clusters were synthesised, characterised and their activity for electrocatalytic CO2 reduction is compared. These Au clusters were deposited onto carbon paper to serve as the cathode for the electrochemical reduction of CO2. The experimental studies suggest that the clusters remain intact upon deposition on the carbon paper but undergo agglomeration during CO2 electrolysis. The cluster-based catalysts demonstrated high selectivity (75%—90%) for CO production over hydrogen evolution reaction. Upon calcination, the activity of the cluster-based electrodes decreases, which can be attributed to the agglomeration of small clusters into larger bulk-like nanoparticles, as suggested by XPS, XAS and SEM.

Graphical Abstract

A series of phosphine-protected gold clusters supported on carbon paper were studied as CO2RR electrocatalysts. The CO2RR activity was dependent on their size and ligand density. Thermal annealing of the catalysts invariably lowered CO selectivity due to agglomeration of the clusters into larger nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The majority of data created during this study are available within this manuscript and its Supplementary Material. All other data is available upon reasonable request to the corresponding author.

References

  1. Q. Lu, F. Jiao, Nano Energy (2016). https://doi.org/10.1016/j.nanoen.2016.04.009

    Article  Google Scholar 

  2. L. Zhang, Z.-J. Zhao, J. Gong, Angew Chem. Int. Ed. (2017). https://doi.org/10.1002/anie.201612214

    Article  Google Scholar 

  3. D.D. Zhu, J.L. Liu, S.Z. Qiao, Adv. Mater. (2016). https://doi.org/10.1002/adma.201504766

    Article  PubMed  PubMed Central  Google Scholar 

  4. K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, Energy Environ. (2012). https://doi.org/10.1039/c2ee21234j

    Article  Google Scholar 

  5. Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Science (2017). https://doi.org/10.1126/science.aad4998

    Article  PubMed  Google Scholar 

  6. T. Ouyang, S. Huang, X.-T. Wang, Z.-Q. Liu, Chem. Euro. J. (2020). https://doi.org/10.1002/chem.202000692

    Article  Google Scholar 

  7. W. Zhu, R. Michalsky, O. Metin, H. Lv, Guo S., C.J. Wright, X. Sun, A.A. Peterson., S. Sun, J. Am. Chem. Soc. (2013). https://doi.org/10.1021/ja409445p

  8. W. Zhu, Y.-J. Zhang, H. Zhang, H. Lv, Q. Li, R. Michalsky, A.A. Peterson, S. Sun, J. Am. Chem. Soc. (2014). https://doi.org/10.1021/ja5095099

    Article  PubMed  PubMed Central  Google Scholar 

  9. H.T. Ahangari, A.T. Marshall, Electrocatalysis (2019). https://doi.org/10.1007/s12678-019-00564-z

    Article  Google Scholar 

  10. H. Huang, H. Jia, Z. Liu, P. Gao, J. Zhao, Z. Luo, J. Yang, J. Zeng, Angew. Chem. Int. Ed. (2017). https://doi.org/10.1002/anie.201612617

    Article  Google Scholar 

  11. A. Loiudice, P. Lobaccaro, E.A. Kamali, T. Thao, B.H. Huang, J.W. Ager, R. Buonsanti, Angew. Chem. Int. Ed. (2016). https://doi.org/10.1002/anie.201601582

    Article  Google Scholar 

  12. W. Choi, D.H. Won, Y.J. Hwang, J. Mater. Chem. A. (2020). https://doi.org/10.1039/d0ta02633f

    Article  Google Scholar 

  13. P. Chauhan, K. Hiekel, J.S. Diercks, J. Herranz, V.A. Saveleva, P. Khavlyuk, A. Eychmüller, T.J. Schmidt, A.C.S. Mater, Au. (2022). https://doi.org/10.1021/acsmaterialsau.1c00067

    Article  Google Scholar 

  14. D. Kim, J. Resasco, Y. Yu, A.M. Asiri, P. Yang, Nat. Comm. (2014). https://doi.org/10.1038/ncomms5948

    Article  Google Scholar 

  15. X. Cai, G. Li, W. Hu, Y. Zhu, ACS Catal. (2022). https://doi.org/10.1021/acscatal.2c02595

    Article  PubMed  PubMed Central  Google Scholar 

  16. M.R. Narouz, K.M. Osten, P.J. Unsworth, R.W.Y. Man, K. Salorinne, S. Takano, R. Tomihara, S. Kaappa, S. Malola, C.-T. Dinh, J.D. Padmos, K. Ayoo, P.J. Garrett, M. Nambo, J.H. Horton, E.H. Sargent, H. Häkkinen, T. Tsukuda, C.M. Crudden, Nat. Chem. (2019). https://doi.org/10.1038/s41557-019-0246-5

    Article  PubMed  Google Scholar 

  17. S. Zhuang, D. Chen, L. Liao, Y. Zhao, N. Xia, W. Zhang, C. Wang, J. Yang, Z. Wu, Angew. Chem. Int. Ed. (2020). https://doi.org/10.1002/anie.201912845

    Article  Google Scholar 

  18. X. Liu, E. Wang, M. Zhou, Y. Wan, Y. Zhang, H. Liu, Y. Zhao, J. Li, Y. Gao, Y. Zhu, Ang. Chem. Int. Ed. (2022). https://doi.org/10.1002/anie.202207685

    Article  Google Scholar 

  19. D.R. Kauffman, D. Alfonso, C. Matranga, H. Qian, R. Jin, J. Am. Chem. Soc. (2012). https://doi.org/10.1021/ja303259q

    Article  PubMed  Google Scholar 

  20. D.R. Kauffman, D. Alfonso, C. Matranga, P. Ohodnicki, X. Deng, R.C. Siva, C. Zeng, R. Jin, Chem. Sci. (2014). https://doi.org/10.1039/c4sc00997e

    Article  Google Scholar 

  21. S. Li, D. Alfonso, A.V. Nagarajan, S.D. House, J.C. Yang, D.R. Kauffman, G. Mpourmpakis, R. Jin, ACS Catal. (2020). https://doi.org/10.1021/acscatal.0c02266

    Article  PubMed  PubMed Central  Google Scholar 

  22. S. Li, A.V. Nagarajan, D.R. Alfonso, M. Sun, D.R. Kauffman, G. Mpourmpakis, R. Jin, Angew. Chem. Int. Ed. (2021). https://doi.org/10.1002/anie.202016129

    Article  Google Scholar 

  23. S. Tang, J. Xu, X. Liu, Y. Zhu, Chem. Euro. J. (2022). https://doi.org/10.1002/chem.202201262

    Article  Google Scholar 

  24. S. Li, A.V. Nagarajan, Y. Li, D.R. Kauffman, G. Mpourmpakis, R. Jin, Nanoscale (2021). https://doi.org/10.1039/d0nr07832h

    Article  PubMed  PubMed Central  Google Scholar 

  25. S. Zhao, N. Austin, M. Li, Y. Song, S.D. House, S. Bernhard, J.C. Yang, G. Mpourmpakis, R. Jin, ACS Catal. (2018). https://doi.org/10.1021/acscatal.8b00365

    Article  PubMed  PubMed Central  Google Scholar 

  26. H. Mousavi, Y. Yin, S.K. Sharma, C.T. Gibson, V. Golovko, G.G. Andersson, C.J. Shearer, G.F. Metha, J. Phys. Chem. C. (2022). https://doi.org/10.1021/acs.jpcc.1c08924

    Article  Google Scholar 

  27. D. Eguchi, M. Sakamoto, T. Teranishi, Chem. Sci. (2018). https://doi.org/10.1039/c7sc03997b

    Article  PubMed  Google Scholar 

  28. B. Kumar, T. Kawawaki, N. Shimizu, Y. Imai, D. Suzuki, S. Hossain, L.V. Nair, Y. Negishi, Nanoscale (2020). https://doi.org/10.1039/d0nr00702a

    Article  PubMed  PubMed Central  Google Scholar 

  29. D.R. Alfonso, D. Kauffman, C. Matranga, J. Chem. Phys. (2016). https://doi.org/10.1063/1.4948792

    Article  PubMed  Google Scholar 

  30. J. Fang, J. Li, B. Zhang, X. Yuan, H. Asakura, T. Tanaka, K. Teramura, J. Xie, N. Yan, Nanoscale (2015). https://doi.org/10.1039/c5nr00549c

    Article  PubMed  Google Scholar 

  31. D.P. Anderson, J.F. Alvino, A. Gentleman, H.A. Qahtani, L. Thomsen, M.I. Polson, G.F. Metha, V.B. Golovko, G.G. Andersson, Phys. Chem. Chem. Phys. (2013). https://doi.org/10.1039/c3cp44005b

    Article  PubMed  Google Scholar 

  32. J.-Y. Ruzicka, F. Abu Bakar, C. Hoeck, R. Adnan, C. McNicoll, T. Kemmitt, B.C. Cowie, G.F. Metha, G.G. Andersson, V.B. Golovko, J. Phys. Chem. C. (2015). https://doi.org/10.1021/acs.jpcc.5b07732

  33. D.R. Kauffman, J. Thakkar, R. Siva, C. Matranga, P.R. Ohodnicki, C. Zeng, R. Jin, A.C.S. Appl, Mater. Interfaces. (2015). https://doi.org/10.1021/acsami.5b04393

    Article  Google Scholar 

  34. W.W. Weare, S.M. Reed, M.G. Warner, J.E. Hutchison, J. Am. Chem. Soc. (2000). https://doi.org/10.1021/ja002673n

    Article  Google Scholar 

  35. Y. Shichibu, K. Konishi, Small (2010). https://doi.org/10.1002/smll.200902398

    Article  PubMed  Google Scholar 

  36. J.J.B.J.W.A. Van der Velden, J.J. Steggerda, P.T. Beurskens, M. Roseboom, J.H. Noordik, Inorg. Chem. (1982). https://doi.org/10.1021/ic00142a041

    Article  Google Scholar 

  37. W. Chen, S. Chen, Angew. Chem. Int. Ed. (2009). https://doi.org/10.1002/anie.200901185

    Article  Google Scholar 

  38. H.A. Taleshi, T. Portail, A.T. Marshall, Electrochem. Comm. (2019). https://doi.org/10.1016/j.elecom.2019.03.005

    Article  Google Scholar 

  39. B.G. Donoeva, D.S. Ovoshchnikov, V.B. Golovko, ACS Catal. (2013). https://doi.org/10.1021/cs400701j

    Article  Google Scholar 

  40. Y. Kitsudo, A. Iwamoto, H. Matsumoto, K. Mitsuhara, T. Nishimura, M. Takizawa, T. Akita, Y. Maeda, Y. Kido, Surf. Sci. (2009). https://doi.org/10.1016/j.susc.2009.04.008

    Article  Google Scholar 

  41. S.B. DiCenzo, S.D. Berry, E.H. Hartford, Phys. Rev. B. (1988). https://doi.org/10.1103/PhysRevB.38.8465

    Article  Google Scholar 

  42. G. Krishnan, H.S. Al Qahtani, J. Li, Y. Yin, N. Eom, V.B. Golovko, G.F. Metha, G.G. Andersson, J Phys. Chem. C. (2017). https://doi.org/10.1021/acs.jpcc.7b09514

  43. M. Buttner, P. Oelhafen, Surf. Sci. (2006). https://doi.org/10.1016/j.susc.2006.01.020

    Article  Google Scholar 

  44. S. Peters, S. Peredkov, M. Neeb, W. Eberhardt, M. Al-Hada, Surf. Sci. (2013). https://doi.org/10.1016/j.susc.2012.09.024

    Article  Google Scholar 

  45. D.P. Anderson, R.H. Adnan, J.F. Alvino, O. Shipper, B. Donoeva, J.-Y. Ruzicka, H. Al Qahtani, H.H. Harris, B. Cowie, J.B. Aitken, V.B. Golovko, G.F. Metha, G.G. Andersson, Phys. Chem. Chem. Phys. (2013). https://doi.org/10.1039/c3cp52497c

  46. B.N. Reinecke, K.P. Kuhl, H. Ogasawara, L. Li, J. Voss, F. Abild-Pedersen, A. Nilsson, T.F. Jaramillo, Surf. Sci. (2016). https://doi.org/10.1016/j.susc.2015.12.025

    Article  Google Scholar 

  47. H.S. Al Qahtani, K. Kimoto, T. Bennett, J.F. Alvino, G.G. Andersson, G.F. Metha, V.B. Golovko, T. Sasaki, T. Nakayama, J. Chem. Phys. (2016). https://doi.org/10.1063/1.4943203

  48. J.I.J. Choi, W. Mayr-Schmölzer, I. Valenti, P. Luches, F. Mittendorfer, J. Redinger, U. Diebold, M. Schmid, J. Phys. Chem. C. (2016). https://doi.org/10.1021/acs.jpcc.6b03061

    Article  Google Scholar 

  49. D. Chekrygina, A. Rothkirch, I. Baev, F. Kielgast, P. Pandit, W. Wurth, M. Martins, Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-30750-w

    Article  PubMed  PubMed Central  Google Scholar 

  50. L. Howard-Fabretto, G.G. Andersson, Adv. Mater. (2020). https://doi.org/10.1002/adma.201904122

    Article  PubMed  Google Scholar 

  51. D.M. Chevrier, M.A. MacDonald, A. Chatt, P. Zhang, Z. Wu, R. Jin, J. Phys. Chem. C. (2012). https://doi.org/10.1021/jp309283y

    Article  Google Scholar 

  52. D.M. Chevrier, A. Chatt, P. Zhang, C. Zeng, R. Jin, J. Phys. Chem. Lett. (2013). https://doi.org/10.1021/jz401818c

    Article  PubMed  Google Scholar 

  53. D.M. Chevrier, C. Zeng, R. Jin, A. Chatt, P. Zhang, J. Phys. Chem. C. (2015). https://doi.org/10.1021/jp509296w

    Article  Google Scholar 

  54. G.A. Simms, J.D. Padmos, P. Zhang, J. Chem. Phys. (2009). https://doi.org/10.1063/1.3268782

    Article  PubMed  Google Scholar 

  55. S. Gaur, J.T. Miller, D. Stellwagen, A. Sanampudi, C.S.S.R. Kumar, J.J. Spivey, Phys. Chem. Chem. Phys. (2012). https://doi.org/10.1039/c1cp22438g

    Article  PubMed  Google Scholar 

  56. J. Liu, K.S. Krishna, Y.B. Losovyj, S. Chattopadhyay, N. Lozova, J.T. Miller, J.J. Spivey, C.S.S.R. Kumar, Chem. Euro. J. (2013). https://doi.org/10.1002/chem.201300600

    Article  Google Scholar 

  57. F. Wen, U. Englert, B. Gutrath, U. Simon, Euro. J. Inorg. Chem. (2008). https://doi.org/10.1002/ejic.200700534

    Article  Google Scholar 

  58. M.A. Bakar, M. Sugiuchi, M. Iwasaki, Y. Shichibu, K. Konishi, Nat. Comm. (2017). https://doi.org/10.1038/s41467-017-00720-3

    Article  Google Scholar 

  59. M.A. Marcus, M.P. Andrews, J. Zegenhagen, A.S. Bommannavar, P. Montano, Phys. Rev. B. (1990). https://doi.org/10.1103/PhysRevB.42.3312

    Article  Google Scholar 

  60. A. Balerna, E. Bernieri, P. Picozzi, A. Reale, S. Santucci, E. Burattini, S. Mobilio, Phys. Rev. B. (1985). https://doi.org/10.1103/physrevb.31.5058

    Article  Google Scholar 

  61. J.T. Steven, V.B. Golovko, B. Johannessen, A.T. Marshall, Electrochim. Acta. (2016). https://doi.org/10.1016/j.electacta.2015.11.096

    Article  Google Scholar 

  62. L.D. Burke, P.F. Nugent, Gold Bull. (1997). https://doi.org/10.1007/BF03214756

    Article  Google Scholar 

  63. D.-C. Lim, C.-C. Hwang, G. Ganteför, Y.D. Kim, Phys. Chem. Chem. Phys. (2010). https://doi.org/10.1039/c0cp00467g

    Article  PubMed  Google Scholar 

  64. D.C. Lim, R. Dietsche, G. Ganteför, Y.D. Kim, Chem. Phys. Lett. (2008). https://doi.org/10.1016/j.cplett.2008.04.059

    Article  Google Scholar 

  65. B.E. Salisbury, W.T. Wallace, R.L. Whetten, Chem. Phys. (2000). https://doi.org/10.1016/s0301-0104(00)00272-x

    Article  Google Scholar 

  66. D.C. Lim, R. Dietsche, G. Ganteför, Y.D. Kim, Chem. Phys. (2009). https://doi.org/10.1016/j.chemphys.2009.03.023

    Article  Google Scholar 

  67. F. Forouzan, A.J. Bard, M.V. Mirkin, Isr. J. Chem. (1997). https://doi.org/10.1002/ijch.199700019

    Article  Google Scholar 

  68. P. Diao, D. Jiang, X. Cui, D. Gu, R. Tong, B. Zhong, Bioelectrochem. Bioenerg. (1999). https://doi.org/10.1016/S0302-4598(99)00038-0

    Article  PubMed  Google Scholar 

  69. C. Cannes, F. Kanoufi, A.J. Bard, Langmuir (2002). https://doi.org/10.1021/la0258906

    Article  Google Scholar 

  70. J. Scharf, H.-H. Strehblow, B. Zeysing, A. Terfort, J. Solid State Electrochem. (2001). https://doi.org/10.1007/s100080000167

    Article  Google Scholar 

  71. A. Gevaerd, F.R. Caetano, P.R. Oliveira, A.J.G. Zarbin, M.F. Bergamini, L.H. Marcolino-Junior, Sens. Actuators B Chem. (2015). https://doi.org/10.1016/j.snb.2015.06.010

    Article  Google Scholar 

  72. H.-G. Boyen, G. Kästle, F. Weigl, B. Koslowski, C. Dietrich, P. Ziemann, J.P. Spatz, S. Riethmüller, C. Hartmann, M. Möller, G. Schmid, M.G. Garnier, P. Oelhafen, Science (2002). https://doi.org/10.1126/science.1076248

    Article  PubMed  Google Scholar 

  73. T. Yoskamtorn, S. Yamazoe, R. Takahata, J.-I. Nishigaki, A. Thivasasith, J. Limtrakul, T. Tsukuda, ACS Catal. (2014). https://doi.org/10.1021/cs501010x

    Article  Google Scholar 

  74. C.T. Campbell, Acc. Chem. Res. (2013). https://doi.org/10.1021/ar3003514

    Article  PubMed  Google Scholar 

  75. V. Sudheeshkumar, K.O. Sulaiman, R.W.J. Scott, Nanoscale Adv. (2020). https://doi.org/10.1039/c9na00549h

    Article  PubMed  Google Scholar 

  76. F. Calle-Vallejo, J. Tymoczko, V. Colic, Q.H. Vu, M.D. Pohl, K. Morgenstern, D. Loffreda, P. Sautet, W. Schuhmann, A.S. Bandarenka, Science (2015). https://doi.org/10.1126/science.aab3501

    Article  PubMed  Google Scholar 

  77. N. Lopez, J.K. Nørskov, J. Am. Chem. Soc. (2002). https://doi.org/10.1021/ja026998a

    Article  PubMed  Google Scholar 

  78. N. Lopez, T.V.W. Janssens, B.S. Clausen, Y. Xu, M. Mavrikakis, T. Bligaard, J.K. Nørskov, J. Catal. (2004). https://doi.org/10.1016/j.jcat.2004.01.001

    Article  Google Scholar 

  79. D. Padayachee, V. Golovko, B. Ingham, A.T. Marshall, Electrochim. Acta. (2014). https://doi.org/10.1016/j.electacta.2013.12.100

    Article  Google Scholar 

  80. D.K. Pattadar, B.P. Mainali, J.B. Jasinski, F.P. Zamborini, ChemElectroChem (2020). https://doi.org/10.1002/celc.201901700

    Article  Google Scholar 

  81. W. Liu, Y.F. Zhu, Q. Jiang, J. Phys. Chem. C. (2010). https://doi.org/10.1021/jp107251a

    Article  Google Scholar 

  82. H. Jiang, Q. He, Y. Zhang, L. Song, Acc. Chem. Res. (2018). https://doi.org/10.1021/acs.accounts.8b00449

    Article  PubMed  PubMed Central  Google Scholar 

  83. A. Longo, E.J.J. de Boed, N. Mammen, M. van der Linden, K. Honkala, H. Häkkinen, P.E. de Jongh, B. Donoeva, Chem. Euro. J. (2020). https://doi.org/10.1002/chem.202000637

    Article  Google Scholar 

  84. S.K. Sharma, Synthesis and activation of metal cluster-based electrocatalysts for CO2 reduction, in Chemistry. University of Cantebury: Christchurch, New Zealand. (2022). https://doi.org/10.26021/12448

  85. Y. Lee, A. Loew, S. Sun, Chem. Mater. (2010). https://doi.org/10.1021/cm9013046

    Article  Google Scholar 

  86. H. Mousavi, S.K. Sharma, V. Golovko, C.J. Shearer, G.F. Metha, ChemNanoMat. (2022). https://doi.org/10.1002/cnma.202200122

    Article  Google Scholar 

Download references

Acknowledgements

This research was undertaken on the X-ray absorption spectroscopy beamline at the Australian Synchrotron, part of ANSTO, grant M16325. The authors thank Dr Rosalie Hocking, Ms Brittany Kerr, and Mr Jaydon Meilak for their help in carrying out the experiments. SKS thanks the University of Canterbury for the UC Connect PhD scholarship.

Funding

SKS acknowledges the funding support of the UC Connect PhD scholarship.

Author information

Authors and Affiliations

Authors

Contributions

SKS: Methodology, Nanomaterial synthesis, Investigation, Formal analysis, Writing—original draft preparation, and leading the manuscript writing. HTA: Electrocatalysis measurements and subsequent analysis, Writing the relevant text in the original draft. BJ: Investigation. VBG: Methodology, Supervision, Manuscript review and editing. ATM: Methodology, Supervision, Manuscript review and editing.

Corresponding authors

Correspondence to Shailendra Kumar Sharma, Vladimir B. Golovko or Aaron T. Marshall.

Ethics declarations

Ethical Approval

Not applicable.

Competing interests

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1835 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S.K., Ahangari, H.T., Johannessen, B. et al. Au Cluster-derived Electrocatalysts for CO2 Reduction. Electrocatalysis 14, 611–623 (2023). https://doi.org/10.1007/s12678-023-00821-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-023-00821-2

Keywords

Navigation