Skip to main content

Advertisement

Log in

Direct Synthesis of Pure H2O2 Aqueous Solution by CoTPP/Ketjen-Black Electrocatalyst and the Fuel Cell Reactor

  • Original Article
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Hydrogen peroxide as an important and green oxidant for chemical process is manufactured by the anthraquinone (AQ) process, which is an indirect synthesis method and consumes a large quantity of energy. We have reported the direct and efficient synthesis of pure H2O2 aqueous solutions by O2 and H2 fuel-cell reactions using the Co-N-C compound cathode. Catalysis of Co-N-C-compound was improved in this work. Precursors of Co-N-C compounds were prepared by impregnation of 5,10,15,20-tetrakis(phenyl)-21H, 23H-porphyrin cobalt (II) (CoTPP) on various carbon materials. Effects of carbon materials, heat-treatment temperatures, Co loadings of the precursors on the electrocatalysis for H2O2 synthesis were studied from a current density (j), a H2O2 formation rate (R(H2O2)), a H2O2 concentration (C(H2O2)) and a faradic efficiency for H2O2 formation (FE(H2O2)). The most active and effective Co-N-C electrocatalyst is Ketjen-Black supported CoTPP (0.05 Co-wt%) activated at 1023 K in He stream as denoted 0.05 wt%/CoTPP/KB(1023 K) and shows a highest C(H2O2) and FE(H2O2) of 5.5 mol dm−3 (18.7 wt%) and 55%, respectively, with a high Co turnover-frequency of 26 s−1. Effects of amounts of the 0.05 wt%/CoTPP/KB(1023 K) electrocatalyst coated on the VGCF-base cathode were studied on the H2O2 synthesis and distributions of open-circuit voltages as electromotive forces to cathode and anode over-potentials and an IR-drop (VGCF: vapor-growing carbon fiber).

The 0.05wt%/CoTPP/KB(1023K) electrocatalyst was active for reduction of O2 to pure H2O2 aqueous solutions 5.5 mol dm–3 and 55 % faradic efficiency (CoTPP: 5, 10, 15, 20-tetrakis(phenyl)-21H, 23H-porphyrin cobalt (II), KB: Ketjen-Black)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Reidl, G. Pfleirender, U. S. Pat 2215883 (1940)

  2. M.C. Campos-Martin, G. Blamco-Brieva, J.L.G. Fierro, Angew. Chem. Int. Ed. 45, 6962–6984 (2006)

    Article  CAS  Google Scholar 

  3. Y. Izumi, U.S. Patent 4,009,252 (1978)

  4. L.W. Gosset, U.S. Patent 4,681,751 (1988)

  5. G. Blamco-Brieva, E. Cano-Serrano, M.C. Campos-Martin, J.L.G. Fierro, Chem. Commun., 1184–1185 (2004)

  6. P. Landon, P.J. Collier, A.J. Papworth, C.J. Kiely, G.J. Hutchings, Chem. Commun., 2058–2059 (2002)

  7. T. Ishihara, Y. Ohura, S. Yoshida, Y. Hata, H. Nishiguchi, Y. Takita, Appl. Catal. A Gen 291, 215–221 (2005)

    Article  CAS  Google Scholar 

  8. V.R. Choudary, A.G. Gaiward, S.D. Sansare, Angew. Chem. Int. Ed. 40, 1776–1777 (2001)

    Article  Google Scholar 

  9. S. Melada, F. Pinna, G. Strukul, S. Perathoner, G. Centi, J. Catal. 237, 213–219 (2006)

    Article  CAS  Google Scholar 

  10. N. Yamada, T. Yamaguchi, H. Otsuka, M. Sudoh, J. Electrochem. Soc. 146, 2587 (1999)

    Article  CAS  Google Scholar 

  11. F. Alcaide, E. Brillas, P.L. Cabot, J. Casado, J. Electrochem. Soc. 145, 3444 (1998)

    Article  CAS  Google Scholar 

  12. P.C. Foller, R.T. Bombard, J. Appl. Electrochem. 25, 613–627 (1995)

    Article  CAS  Google Scholar 

  13. I. Yamanaka, T. Murayama, Angew. Chem. Int. Ed. 10, 1900–1902 (2008)

    Article  Google Scholar 

  14. T. Murayama, I. Yamanaka, J. Phy. Chem, C 115, 5792–5799 (2011)

    Article  CAS  Google Scholar 

  15. I. Yamanaka, J. Jpn Petrol. Inst. 57, 237–250 (2014)

    Article  CAS  Google Scholar 

  16. I. Yamanaka, Catal. Surv. Jpn. 12, 78–88 (2008)

    Article  CAS  Google Scholar 

  17. I. Yamanaka, T. Hashimoto, R. Ichihashi, Electrochim. Acta 53, 4824–4832 (2008)

    Article  CAS  Google Scholar 

  18. I. Yamanaka, T. Onizawa, H. Suzuki, N. Hanaizumi, Chem. Lett. 35, 1330–1331 (2006)

    Article  CAS  Google Scholar 

  19. I. Yamanaka, T. Hashimoto, K. Otsuka, Chem. Lett., 852–853 (2002)

  20. K. Otsuka, I. Yamanaka, Electrochim. Acta 35, 319–322 (1990)

    Article  CAS  Google Scholar 

  21. I. Yamanaka, R. Ichihashi, T. Iwasaki, N. Nishimura, T. Murayama, W. Ueda, S. Takenaka, Electrochim. Acta 108, 321–329 (2013)

    Article  CAS  Google Scholar 

  22. I. Yamanaka, S. Tazawa, T. Murayama, R. Ichihashi, N. Hanaizumi, ChemSusChem 1, 988–990 (2009)

    Article  Google Scholar 

  23. I. Yamanaka, T. Onizawa, S. Takenaka, K. Otsuka, Angew. Chem. Int. Ed. 42, 3653–3654 (2003)

    Article  CAS  Google Scholar 

  24. D.T. Sawyer, Oxygen chemistry (Oxford Univ. Press, New York, 1991)

    Google Scholar 

  25. D.T. Sawyer, J.S. Valentine, Acc. Chem. Res. 14, 393–400 (1981)

    Article  CAS  Google Scholar 

  26. J.M. Ziegelbauer, T.S. Olson, S. Pylypenko, F. Alamgir, C. Jaye, P. Atanassov, S. Mukerjee, J. Phys. Chem. C 112, 8839–8849 (2008)

    Article  CAS  Google Scholar 

  27. M.C.M. Alves, J.P. Dodelet, D. Guay, M. Ladouceur, G. Tourillo, J. Phys. Chem. 96, 10898–10905 (1992)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Yamanaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwasaki, T., Masuda, Y., Ogihara, H. et al. Direct Synthesis of Pure H2O2 Aqueous Solution by CoTPP/Ketjen-Black Electrocatalyst and the Fuel Cell Reactor. Electrocatalysis 9, 236–242 (2018). https://doi.org/10.1007/s12678-017-0444-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0444-0

Keywords

Navigation