Electrocatalysis

, Volume 9, Issue 3, pp 343–351 | Cite as

Electrocatalytic Reduction of Nitrate and Nitrite at CuRh Nanoparticles/C Composite Electrodes

  • Peyman Mirzaei
  • Stéphane Bastide
  • Atieh Aghajani
  • Julie Bourgon
  • Claudia Zlotea
  • Michel Laurent
  • Michel Latroche
  • Christine Cachet-Vivier
Original Research
  • 107 Downloads

Abstract

Composites consisting of rhodium, copper, and copper-rhodium nanoparticles (2 nm in average diameter) dispersed in a high-surface area graphite powder (~ 10 wt.% of metal) have been synthesized by a wet chemical method. After characterization by ICP-OES and TEM, they have been tested for the electrochemical reduction of nitrates in alkaline media (10−1 mol L−1 KOH) using a cavity microelectrode. It is found that in the 0.02–0.5 V/RHE potential range, bimetallic composites exhibit a much higher electrocatalytic activity than single-metal composites. The peak current describes a volcano plot as a function of the composition, with a maximum for CuRh, which is 7.5 times higher than that obtained with pure rhodium (under identical metal wt.%). This synergistic effect can be rationalized directly from the electrochemical response of pure metals. It is then tentatively attributed to the fact that the first (rate determining) reduction step, corresponding to the formation of nitrites, takes place efficiently in copper-rich areas while the subsequent steps of nitrite reduction in ammonia (via hydroxylamine formation) occur in rhodium-rich areas. For the same mass of rhodium, the electrocatalytic conversion of nitrates to ammonia is 12 times more effective with CuRh than with pure rhodium. With the additional gain in active surface area due to the nanoparticle morphology compared to bulk or thin film forms, these results represent a step-forward in cost reduction of rhodium-based electrocatalysts for the conversion of nitrates to ammonia.

Graphical Abstract

Composites of copper-rhodium nanoparticles in graphite powder were tested for the electrochemical reduction of nitrates in alkaline media. They exhibit a much higher electrocatalytic activity for the conversion of nitrates to ammonia than composites with pure rhodium nanoparticles, up to 12 times more at a composition close to CuRh.

Keywords

Copper-rhodium Nanoparticle Nitrate Electrocatalysis High-surface area graphite Cavity microelectrode 

Notes

Acknowledgements

The authors acknowledge the support of the Centre National de la Recherche Scientifique and the University Paris-Est Créteil and thank Junxian Zhang for the ICP-OES analysis. P. Mirzaei acknowledges MBA Water Treatment Chemicals Co. for the financial support of his PhD.

Supplementary material

12678_2017_437_MOESM1_ESM.docx (314 kb)
ESM 1 (DOCX 314 kb)

References

  1. 1.
    M. Duca, M.T.M. Koper, Energy Environ. Sci. 5, 9726 (2012)CrossRefGoogle Scholar
  2. 2.
    O. Ghodbane, M. Sarrazin, L. Roué, D. Bélanger, J. Electrochem. Soc. 155, F117 (2008)CrossRefGoogle Scholar
  3. 3.
    A.C.A. de Vooys, R.A. van Santen, J.A.R. van Veen, J. Mol. Catal. Chem. 154, 203 (2000)CrossRefGoogle Scholar
  4. 4.
    D. Reyter, D. Bélanger, L. Roué, J. Phys. Chem. C 113, 290 (2009)CrossRefGoogle Scholar
  5. 5.
    C. Milhano, D. Pletcher, J. Electroanal. Chem. 614, 24 (2008)CrossRefGoogle Scholar
  6. 6.
    T. Chen, H. Li, H. Ma, M.T.M. Koper, Langmuir 31, 3277 (2015)CrossRefGoogle Scholar
  7. 7.
    P. Rodriguez, F.D. Tichelaar, M.T.M. Koper, A.I. Yanson, J. Am. Chem. Soc. 133, 17626 (2011)CrossRefGoogle Scholar
  8. 8.
    N. Comisso, S. Cattarin, S. Fiameni, R. Gerbasi, L. Mattarozzi, M. Musiani, L. Vázquez-Gómez, E. Verlato, Electrochem. Commun. 25, 91 (2012)CrossRefGoogle Scholar
  9. 9.
    W. Siriwatcharapiboon, Y. Kwon, J. Yang, R.L. Chantry, Z. Li, S.L. Horswell, M.T.M. Koper, ChemElectroChem 1, 172 (2014)CrossRefGoogle Scholar
  10. 10.
    G.E. Dima, A.C.A. de Vooys, M.T.M. Koper, J. Electroanal. Chem. 554, 15 (2003)CrossRefGoogle Scholar
  11. 11.
    N. Comisso, S. Cattarin, P. Guerriero, L. Mattarozzi, M. Musiani, L. Vázquez-Gómez, E. Verlato, J. Solid State Electrochem. 20, 1139 (2016)CrossRefGoogle Scholar
  12. 12.
    S.N. Pronkin, P.A. Simonov, V.I. Zaikovskii, E.R. Savinova, J. Mol. Catal. Chem. 265, 141 (2007)CrossRefGoogle Scholar
  13. 13.
    D. Reyter, D. Bélanger, L. Roué, Electrochim. Acta 53, 5977 (2008)CrossRefGoogle Scholar
  14. 14.
    O. Brylev, M. Sarrazin, L. Roué, D. Bélanger, Electrochim. Acta 52, 6237 (2007)CrossRefGoogle Scholar
  15. 15.
    O. Brylev, M. Sarrazin, D. Bélanger, L. Roué, Appl. Catal. B Environ. 64, 243 (2006)CrossRefGoogle Scholar
  16. 16.
    M. Duca, B. van der Klugt, M.A. Hasnat, M. Machida, M.T.M. Koper, J. Catal. 275, 61 (2010)CrossRefGoogle Scholar
  17. 17.
    E. Verlato, S. Cattarin, N. Comisso, L. Mattarozzi, M. Musiani, L. Vázquez-Gómez, Electrocatalysis 4, 203 (2013)CrossRefGoogle Scholar
  18. 18.
    K.J. Reddy, J. Lin, Water Res. 34, 995 (2000)CrossRefGoogle Scholar
  19. 19.
    J.W. Peel, K.J. Reddy, B.P. Sullivan, J.M. Bowen, Water Res. 37, 2512 (2003)CrossRefGoogle Scholar
  20. 20.
    L.A. Estudillo-Wong, E.M. Arce-Estrada, N. Alonso-Vante, A. Manzo-Robledo, Catal. Today 166, 201 (2011)CrossRefGoogle Scholar
  21. 21.
    F.V. Andrade, L.J. Deiner, H. Varela, J.F.R. de Castro, I.A. Rodrigues, F.C. Nart, J. Electrochem. Soc. 154, F159 (2007)CrossRefGoogle Scholar
  22. 22.
    D. De, J.D. Englehardt, E.E. Kalu, J. Electrochem. Soc. 147, 4224 (2000)CrossRefGoogle Scholar
  23. 23.
    C. Cachet-Vivier, S. Bastide, M. Laurent, C. Zlotea, M. Latroche, Electrochim. Acta 83, 133 (2012)CrossRefGoogle Scholar
  24. 24.
    C. Cachet-Vivier, M. Keddam, V. Vivier, L.T. Yu, J. Electroanal. Chem. 688, 12 (2013)CrossRefGoogle Scholar
  25. 25.
    H.-L. Luo, P. Duwez, J. Common Met. 6, 248 (1964)CrossRefGoogle Scholar
  26. 26.
    J. H. He, H. W. Sheng, J. S. Lin, P. J. Schilling, R. C. Tittsworth, and E. Ma, Phys. Rev. Lett. 89, 125507 (2002)Google Scholar
  27. 27.
    P.M. Tucker, M.J. Waite, B.E. Hayden, J. Appl. Electrochem. 34, 781 (2004)CrossRefGoogle Scholar
  28. 28.
    O.A. Petrii, T.Y. Safonova, J. Electroanal. Chem. 331, 897 (1992)CrossRefGoogle Scholar
  29. 29.
    R.G. Compton, C.E. Banks, Understanding voltammetry, 2nd edn. (Imperial College Press, London, 2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Université Paris EstICMPE (UMR 7182), CNRS, UPECThiaisFrance
  2. 2.MBA Water Treatment Chemicals Co., Ltd.TehranIran

Personalised recommendations