Skip to main content
Log in

Electrochemical Dissolution of Platinum Electrode in Perfluoroalkylsulfonic Acid

  • Original Article
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The electrochemical dissolution of Pt in perfluoroalkylsulfonic acid was investigated to understand the degradation of polymer electrolyte fuel cells. Trifluoromethanesulfonic acid (TFMSA) was used as the electrolyte solution. The results showed that a Pt electrode significantly dissolves by successive potential cycling between −0.26 and 2.0 V vs. Ag/Ag2SO4 in concentrated TFMSA solutions such as 10 mol dm−3. The anodic Pt dissolution is induced during the potential step conducted in the 10 mol dm−3 TFMSA. Chronopotentiometry revealed that the Pt anodically dissolved at 2.0 V vs. Ag/Ag2SO4 is Pt4+. From the double potential chronocoulometry, it was considered that the anodic Pt dissolution in the concentrated TFMSA involves the direct dissolution of the metallic Pt and the Pt dissolution due to the place exchange of the oxygen atoms in PtO and PtO2. Also, the local low pH caused by the H+ ions generated during the O2 evolution might accelerate the significant anodic Pt dissolution in the 10 mol dm−3 TFMSA.

Significant anodic Pt dissolution in concentrated trifluoromethanesulfonic acid (TFMSA) contains the direct dissolution of the metallic Pt and the Pt dissolution due to the place exchange of the oxygen atoms in the Pt oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Rabi, P. Rodriguez, T.J. Schmidt, ACS Catal. 2, 864 (2012)

    Article  Google Scholar 

  2. X. Yu, S. Ye, J. Power Sources 172, 145 (2007)

    Article  CAS  Google Scholar 

  3. W. Bi, Q. Sun, Y. Deng, T.F. Fuller, Electrochim. Acta 54, 1826 (2009)

    Article  CAS  Google Scholar 

  4. X. Li, S. Park, B.N. Popov, J. Power Sources 195, 445 (2010)

    Article  CAS  Google Scholar 

  5. A. Chen, P. Holt-Hindle, Chem. Rev. 110, 3767 (2010)

    Article  CAS  Google Scholar 

  6. K. Sasaki, M. Shao, R. Adzic, in Polymer Electrolyte Fuel Cell Durability, ed. By F. N Büchi, M. Inaba, T. J. Schmidt (Springer, New York, 2009), p. 7

  7. Z.-B. Wang, P.-J. Zuo, Y.-Y. Chu, Y.-Y. Shao, G.-P. Yin, Int. J. Hydrog. Energy 34, 4387 (2009)

    Article  CAS  Google Scholar 

  8. W. Bi, G.E. Gray, T.F. Fuller, Electrochem. Solid-State Lett. 10, B101 (2007)

    Article  CAS  Google Scholar 

  9. L. Kim, C.G. Chung, Y.W. Sung, J.S. Chung, J. Power Sources 183, 524 (2008)

    Article  CAS  Google Scholar 

  10. C.G. Chung, L. Kim, Y.W. Sung, J. Lee, J.S. Chung, Int. J. Hydrog. Energy 34, 8974 (2009)

    Article  CAS  Google Scholar 

  11. S. Cherevko, N. Kulyk, K.J.J. Mayrhofer, Nano Energy 29, 275 (2016)

    Article  CAS  Google Scholar 

  12. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd edn. (National Association of Corrosion Engineers, Houston, 1974), p. 378

    Google Scholar 

  13. X. Wang, R. Kumar, D.J. Myers, Electrochem. Solid-State Lett. 9, A225 (2006)

    Article  CAS  Google Scholar 

  14. Y. Shao, G. Yin, Y. Gao, J. Power Sources 171, 558 (2007)

    Article  CAS  Google Scholar 

  15. Y. Sugawara, A.P. Yadav, A. Nishikata, T. Tsuru, Electrochemistry 75, 359 (2007)

    Article  CAS  Google Scholar 

  16. S. Mitsushima, S. Kawahara, K. Ota, N. Kamiya, J. Electrochem. Soc. 154, B153 (2007)

    Article  CAS  Google Scholar 

  17. F. Kodera, Y. Kuwahara, A. Nakazawa, M. Umeda, J. Power Sources 172, 698 (2007)

    Article  CAS  Google Scholar 

  18. M. Umeda, Y. Kuwahara, A. Nakazawa, M. Inoue, J. Phys. Chem. C 113, 15707 (2009)

    Article  CAS  Google Scholar 

  19. M. Inoue, A. Nakazawa, M. Umeda, J. Power Sources 196, 4579 (2011)

    Article  CAS  Google Scholar 

  20. M. Inoue, A. Nakazawa, M. Umeda, Int. J. Hydrog. Energy 37, 1226 (2012)

    Article  CAS  Google Scholar 

  21. H. Itaya, S. Shironita, A. Nakazawa, M. Inoue, M. Umeda, J. Renewable Sustainable Energy 6, 043112 (2014)

    Article  Google Scholar 

  22. L. Xing, M.A. Hossain, M. Tian, D. Beauchemin, K.T. Adjemian, G. Jerkiewicz, Electrocatalysis 5, 96 (2014)

    Article  CAS  Google Scholar 

  23. Y. Furuya, T. Mashio, A. Ohma, M. Tian, F. Kaveh, D. Beauchemin, G. Jerkiewicz, ACS Catal. 5, 2605 (2015)

    Article  CAS  Google Scholar 

  24. H. Itaya, S. Shironita, A. Nakazawa, M. Inoue, M. Umeda, Int. J. Hydrog. Energy 41, 534 (2016)

    Article  CAS  Google Scholar 

  25. S. Takizawa, A. Nakazawa, M. Inoue, M. Umeda, J. Power Sources 195, 5966 (2010)

    Article  CAS  Google Scholar 

  26. G. J. Janz, in Reference Electrode Theory and Practice, ed. By D. J. G. Ives, G. J. Janz, (Academic Press, New York and London, 1961), chapter 4

  27. D. J. G. Ives, F. R. Smith, in Reference Electrode Theory and Practice, ed. By D. J. G. Ives, G. J. Janz, (Academic Press, New York and London, 1961), chapter 8

  28. M. Umeda, H. Ojima, M. Mohamedi, I. Uchida, J. Power Sources 136, 10 (2004)

    Article  CAS  Google Scholar 

  29. S. Tanaka, M. Umeda, H. Ojima, Y. Usui, O. Kimura, I. Uchida, J. Power Sources 152, 34 (2005)

    Article  CAS  Google Scholar 

  30. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, New York, 2001), p. 570

    Google Scholar 

  31. M. Umeda, A. Kabasawa, M. Kokubo, M. Mohamedi, T. Itoh, I. Uchida, Jpn. J. Appl. Phys. 40, 5141 (2001)

    Article  CAS  Google Scholar 

  32. K. Kashima, M. Umeda, A. Yamada, I. Uchida, Chem. Lett. 33, 1622 (2004)

    Article  CAS  Google Scholar 

  33. H.S. Harned, W.J. Hamer, J. Am. Chem. Soc. 57, 27 (1935)

    Article  CAS  Google Scholar 

  34. M. Umeda, T. Maruta, M. Inoue, A. Nakazawa, J. Phys. Chem. C 112, 18098 (2008)

    Article  CAS  Google Scholar 

  35. B.R. Shrestha, E. Tada, A. Nishikata, Electrochim. Acta 143, 161 (2014)

    Article  CAS  Google Scholar 

  36. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (John Wiley & Sons, New York, 1980), p. 257

    Google Scholar 

  37. F. Kodera, M. Umeda, A. Yamada, J. Electroanal. Chem. 625, 92 (2009)

    Article  CAS  Google Scholar 

  38. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (John Wiley & Sons, New York, 1980), pp. 200–202

    Google Scholar 

  39. J.H. Christie, R.A. Osteryoung, F.C. Anson, J. Electroanal. Chem. 13, 236 (1967)

    Article  CAS  Google Scholar 

  40. Z. Wang, E. Tada, A. Nishikata, J. Electrochem. Soc. 161, F380 (2014)

    Article  CAS  Google Scholar 

  41. F. Seland, R. Tunold, D.A. Harrington, Electrochim. Acta 53, 6851 (2008)

    Article  CAS  Google Scholar 

  42. G. Inzelt, B.B. Berkes, Á. Kriston, A. Székely, J. Solid State Electrochem. 15, 901 (2011)

    Article  CAS  Google Scholar 

  43. H. Imai, K. Izumi, M. Matsumoto, Y. Kubo, K. Kato, Y. Imai, J. Am. Chem. Soc. 131, 6293 (2009)

    Article  CAS  Google Scholar 

  44. M. Wakisaka, H. Suzuki, S. Mitsui, H. Uchida, M. Watanabe, Langmuir 25, 1897 (2009)

    Article  CAS  Google Scholar 

  45. Z. Wang, E. Tada, A. Nishikata, Mater. Transactions 56, 1214 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Umeda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umeda, M., Okuda, Y., Takizawa, S. et al. Electrochemical Dissolution of Platinum Electrode in Perfluoroalkylsulfonic Acid. Electrocatalysis 9, 243–251 (2018). https://doi.org/10.1007/s12678-017-0400-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0400-z

Keywords

Navigation