Skip to main content
Log in

Enhancement of Oxygen Reduction Reaction Activity of Pd Core-Pt Shell Structured Catalyst on a Potential Cycling Accelerated Durability Test

  • Original Article
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Carbon-supported Pd core-Pt shell structured catalyst (Pt/Pd/C) was synthesized by a modified Cu under potential deposition/Pt displacement method without any precise potential control. The specific activity for oxygen reduction reaction (ORR) of the Pt/Pd/C catalyst increased by 5-fold after an accelerated durability test (ADT; rectangular wave potential cycling of 0.6 V (3 s)–1.0 V (3 s) performed in Ar-saturated 0.1 M HClO4 at 80 °C for 10,000 cycles), which enhanced ORR mass activity of the catalyst by 1.4-fold although its electrochemical surface area significantly decreased. TEM observation showed that the morphology of the catalyst particles changed into a spherical shape and the mean diameter decreased after the ADT. TEM-EDX compositional analysis revealed that the Pd core preferentially dissolved out and that the Pt shell was rearranged and thickened with the ADT. CV measurement using Bi3+ probe implied that the Pt(111) facet was partially formed on the Pt shell after the ADT. Furthermore, EXAFS analysis showed that the Pt–Pt bond distance of the Pt shell was shortened after the ADT. It was considered that the drastic enhancement in the ORR-specific activity of the catalyst after the ADT arises from the decrease in number of lowly coordinated surface Pt atoms, partially formed Pt(111) facet on the catalyst surface, and properly induced compressive strain in the Pt shell via the rearrangement of the Pt shell assisted by the preferential dissolution of the Pd core during the ADT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. T. Toda, H. Igarashi, H. Uchida, M. Watanabe, Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co. J. Electrochem. Soc. 146, 3750-3756 (1999)

  2. V.R. Stamenkovic, T.J. Schmidt, P.N. Ross, N.M. Markovic, Surface Composition Effects in Electrocatalysis: Kinetics of Oxygen Reduction on Well-Defined Pt3Ni and Pt3Co Alloy Surfaces. J. Phys. Chem. B 106, 11970-11979 (2002)

  3. V.R. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J. Greeley, J.K. Nørskov, Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure. Angew. Chem. Int. Ed. 45, 2897-2901 (2006)

  4. V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J.J. Mayrhofer, C.A. Lucas, G. Wang, P.N. Ross, N.M. Markovic, Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 6, 241-247 (2007)

  5. V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, N.M. Markovic, Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability, Science 315, 493-497 (2007)

  6. P. Mani, R. Srivastava, P. Strasser, Dealloyed Pt−Cu Core−Shell Nanoparticle Electrocatalysts for Use in PEM Fuel Cell Cathodes, J. Phys. Chem. C 112, 2770-2778 (2008)

  7. P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney, A. Nilsson, Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454-460 (2010)

  8. C. Wang, M. Chi, D. Li, D. Strmcnik, D. Vliet, G. Wang, V. Komanicky, K.C. Chang, A.P. Paulikas, D. Tripkovic, J. Pearson, K.L. More, N.M. Markovic, V.R. Stamenkovic, Design and Synthesis of Bimetallic Electrocatalyst with Multilayered Pt-Skin Surfaces. J. Am. Chem. Soc. 133, 14396–14403 (2011)

  9. A.S. Bondarenko, I.E.L. Stephens, L. Bech, I. Chorkendorff, Probing adsorption phenomena on a single crystal Pt-alloy surface under oxygen reduction reaction conditions. Electrochim. Acta 82, 517-523 (2012)

  10. C. Wang, N.M. Markovic, V.R. Stamenkovic, Advanced Platinum Alloy Electrocatalysts for the Oxygen Reduction Reaction. ACS Catal. 2, 891-898 (2012)

  11. J. Zhang, Y. Mo, M.B. Vukmirovic, R. Klie, K. Sasaki, R.R. Adzic, Platinum Monolayer Electrocatalysts for O2 Reduction: Pt Monolayer on Pd(111) and on Carbon-Supported Pd Nanoparticles. J. Phys. Chem. B 108, 10955-10964 (2004)

  12. J. Zhang, M.B. Vukmirovic, Y. Xu, M. Mavrikakis, R.R. Adzic, Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates. Angew. Chem. Int. Ed. 44, 2132–2135 (2005)

  13. A.U. Nilekar, Y. Xu, J. Zhang, M.B. Vukmirovic, K. Sasaki, R.R. Adzic, M. Mavrikakis, Bimetallic and Ternary Alloys for Improved Oxygen Reduction Catalysis. Top. Catal. 46, 276-284 (2007)

  14. J.X. Wang, H. Inada, L. Wu, Y. Zhu, Y.M. Choi, P. Liu, W.P. Zhou, R.R. Adzic, Oxygen Reduction on Well-Defined Core−Shell Nanocatalysts: Particle Size, Facet, and Pt Shell Thickness Effects. J. Am. Chem. Soc. 131, 17298-17302 (2009)

  15. K. Sasaki, J.X. Wang, H. Naohara, N. Marinkovic, K. More, H. Inada, R.R. Adzic, Recent advances in platinum monolayer electrocatalysts for oxygen reduction reaction: Scale-up synthesis, structure and activity of Pt shells on Pd cores, Electrochim. Acta 55, 2645-2652 (2010)

  16. K. Sasaki, H. Naohara, Y. Cai, Y. Choi, P. Liu, M.B. Vukmirovic, J.X. Wang, R.R. Adzic, Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes. Angew. Chem. Int. Ed. 49, 8602-8607 (2010)

  17. K. Sasaki, H. Naohara, Y. Choi, Y. Cai, W.F. Chen, P. Liu, R.R. Adzic, Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nat. Commun. 3, 1115 (2012)

  18. G. Zhang, Z.G. Shao, W. Lu, F. Xie, H. Xiao, X. Qin, B. Yi, Core–shell Pt modified Pd/C as an active and durable electrocatalyst for the oxygen reduction reaction in PEMFCs. Appl. Catal. B Environ. 132-133, 183-194 (2013)

  19. B. Hammer, J.K. Nørskov, Theoretical surface science and catalysis—calculations and concepts. Adv. Catal. 45, 71–129 (2000)

  20. J.R. Kitchin, J.K. Nørskov, M.A. Barteau, J.G. Chen, Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J. Chem. Phys. 120, 10240-10246 (2004)

  21. S.R. Brankovic, J.X. Wang, R.R. Adzic, Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf. Sci. 474, L173-L179 (2001)

  22. J. Clavilier, J.M. Feliu, A. Aldaz, An irreversible structure sensitive adsorption step in bismuth underpotential deposition at platinum electrodes. J. Electroanal. Chem. 243, 419-433 (1988)

  23. P. Rodriguez, E. Herrero, J.S. Gullon, F.J.V. Iglesias, A. Aldaz, J.M. Feliu, Specific surface reactions for identification of platinum surface domains: Surface characterization and electrocatalytic tests, Electrochim. Acta 50, 4308-4317 (2005)

  24. J. Solla-Gullon, P. Rodrıguez, E. Herrero, A. Aldaz, J.M. Feliu, Surface characterization of platinum electrodes. Phys. Chem. Chem. Phys. 10, 1359-1373 (2008)

  25. J. Clavilier, R. Faure, G. Guinet, R. Durand, Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and {110} planes. J. Electroanal. Chem. 107, 205-209 (1979)

  26. J. Clavilier, R. Durand, G. Guinet, R. Faure, Electrochemical adsorption behaviour of Pt(100) in sulphuric acid solution. J. Electroanal. Chem. 127, 281-287 (1981)

  27. A.J. Bard, L. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd edn. (Wiley, New York, 2001), p. 331

    Google Scholar 

  28. N.M. Markovic, R.R. Adzic, B.D. Cahan, E.B. Yeager, Structural effects in electrocatalysis: oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions. J. Electroanal. Chem. 377, 249-259 (1994)

  29. X. Wang, Y. Orikasa, Y. Takesue, H. Inoue, M. Nakamura, T. Minato, N. Hoshi, Y. Uchimoto, Quantitating the Lattice Strain Dependence of Monolayer Pt Shell Activity toward Oxygen Reduction. J. Am. Chem. Soc. 135, 5938-5941 (2013)

  30. M.P. Humbert, B.H. Smith, Q. Wang, S.N. Ehrlich, M. Shao, Synthesis and Characterization of Palladium–Platinum Core–Shell Electrocatalysts for Oxygen Reduction. Electrocatalysis 3, 298-303 (2012)

  31. N. Aoki, T. Nishikawa, K. Koga, H. Daimon, M. Inaba, H. Inoue, 228 th ECS Meeting, #1376 (Pheonix, USA, 2015)

    Google Scholar 

  32. H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 56, 9–35 (2005)

  33. K.J.J. Mayrhofer, B.B. Blizanac, M. Arenz, V.R. Stamenkovic, P.N. Ross, N.M. Markovic, The Impact of Geometric and Surface Electronic Properties of Pt-Catalysts on the Particle Size Effect in Electrocatalysis J. Phys. Chem. B 109, 14433-14440 (2005)

  34. K.J.J. Mayrhofer, D. Strmcnik, B.B. Blizanac, V. Stamenkovic, M. Arenz, N.M. Markovic, Measurement of oxygen reduction activities via the rotating disc electrode method: From Pt model surfaces to carbon-supported high surface area catalysts. Electrochim. Acta 53, 3181-3188 (2008)

  35. W. Sheng, S. Chen, E. Vescovo, Y. Shao-Horn, Size Influence on the Oxygen Reduction Reaction Activity and Instability of Supported Pt Nanoparticles. J. Electrochem. Soc. 159, B96-B103 (2012)

  36. M. Shao, A. Peles, K. Shoemaker, Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity. Nano Lett. 11, 3714-3719 (2011)

  37. B. Hammer, J.K. Nørskov, Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 343, 211-220 (1995)

  38. L. Dubau, F. Maillard, M. Chatenet, J. André, E. Rossinot, Nanoscale compositional changes and modification of the surface reactivity of Pt3Co/C nanoparticles during proton-exchange membrane fuel cell operation. Electrochim. Acta 56, 776-783 (2010)

  39. L. Dubau, F. Maillard, M. Chatenet, L. Guetaz, J. Andre, E. Rossinot, Durability of Pt3Co/C Cathodes in a 16 Cell PEMFC Stack: Macro/Microstructural Changes and Degradation Mechanisms. J. Electrochem. Soc. 157, B1887-B1895 (2010)

  40. L. Dubau, J. Durst, F. Maillard, L. Guétaz, M. Chatenet, J. André, E. Rossinot, Further insights into the durability of Pt3Co/C electrocatalysts: Formation of “hollow” Pt nanoparticles induced by the Kirkendall effect. Electrochim. Acta 56, 10658-10667 (2011)

  41. L. Dubau, M. Lopez-Haro, L. Castanheira, J. Durst, M. Chatenet, P.B. Guillemaud, L. Guétaz, N. Caqué, E. Rossinot, F. Maillard, Probing the structure, the composition and the ORR activity of Pt3Co/C nanocrystallites during a 3422 h PEMFC ageing test. Appl. Catal. B Environ. 142-143, 801-808 (2013)

  42. A.A. Topalov, I. Katsounaros, M. Auinger, S. Cherevko, J.C. Meier, S.O. Klemm, K.J.J. Mayrhofer, Dissolution of Platinum: Limits for the Deployment of Electrochemical Energy Conversion? Angew. Chem. Int. Ed. 51, 12613-12615 (2012)

  43. A.A. Topalov, S. Cherevko, A.R. Zeradjanin, J.C. Meier, I. Katsounaros, K.J.J. Mayrhofer, Towards a comprehensive understanding of platinum dissolution in acidic media. Chem. Sci. 5, 631-638 (2014)

  44. E. Pizzutilo, S. Geiger, S.J. Freakley, A. Mingers, S. Cherevko, G.J. Hutchings, K.J.J. Mayrhofer, Palladium electrodissolution from model surfaces and nanoparticles. Electrochim. Acta 229, 467-477 (2017)

  45. N. Aoki, H. Inoue, A. Shirai, S. Higuchi, Y. Matsui, H. Daimon, T. Doi, M. Inaba, Electrochemical and Chemical Treatment Methods for Enhancement of Oxygen Reduction Reaction Activity of Pt Shell-Pd Core Structured Catalyst. Electrochim. Acta 244, 146-153 (2017)

Download references

Acknowledgements

This study was supported by New Energy and Industrial Technology Development Organization (NEDO), Japan.

Author information

Authors and Affiliations

Authors

Contributions

This manuscript was written through the contributions of all authors, and the authors have approved the final version of the manuscript. All authors equally contributed to the manuscript.

Corresponding author

Correspondence to Naoya Aoki.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoki, N., Inoue, H., Okawa, T. et al. Enhancement of Oxygen Reduction Reaction Activity of Pd Core-Pt Shell Structured Catalyst on a Potential Cycling Accelerated Durability Test. Electrocatalysis 9, 125–138 (2018). https://doi.org/10.1007/s12678-017-0399-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0399-1

Keywords

Navigation