Skip to main content

Advertisement

Log in

An Artificial Photosynthesis System Based on Ti/TiO2 Coated with Cu(II) Aspirinate Complex for CO2 Reduction to Methanol

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

A novel copper(II) aspirinate complex easily deposited onto nanotubes of Ti/TiO2 was successfully employed in the conversion of CO2 to methanol through the use of UV-Vis irradiation coupled to a bias potential of −0.35 V vs saturated calomel electrode. An average concentration of 0.8 mmol L−1 of methanol was obtained in 0.1 mol L−1 of sodium sulfate saturated with CO2 using a self-organized Ti/TiO2 nanotubular array electrode coated with a [Cu2(asp)4] complex. The influence exerted by CO2 and the complex over the behavior of photocurrent vs potential curves is discussed. Furthermore, a complete investigation of all parameters that tend to influence the global process of methanol production by the photoelectrocatalytic method such as applied potential, electrolyte, and time is also thoroughly presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.-R. Li, Y. Ma, M.C. McCarthy, J. Sculley, J. Yu, H.-K. Jeong, P.B. Balbuena, H.-C. Zhou, Coord. Chem. Rev. 255, 1791 (2011)

    Article  CAS  Google Scholar 

  2. N.S. Spinner, J.A. Vega, W.E. Mustain, Catal Sci Technol 2, 19 (2012)

    Article  CAS  Google Scholar 

  3. S. A. Rackley, Carbon Capture and Storage, 1st edn. (Butterworth-Heinemann, Elsevier, 2010), pp. 20-22

  4. S.J.T. Hangx, Behaviour of the CO2-H2O system and preliminary mineralisation model and experiments. CATO Workpackage WP 4, 1 (2005)

  5. J.F. de Brito, A.R. Araujo, K. Rajeshwar, M.V.B. Zanoni, B. Zanoni, Chem. Eng. J. 264, 302 (2015)

    Article  Google Scholar 

  6. S. Ohya, S. Kaneco, H. Katsumata, T. Suzuki, K. Ohta, Catal. Today 148, 329 (2009)

    Article  CAS  Google Scholar 

  7. D. Gust, T.A. Moore, A.L. Moore, G. Ciamician, Faraday Discuss. 155, 9 (2012)

    Article  CAS  Google Scholar 

  8. Ș. Neațu, J. Maciá-Agulló, H. Garcia, Int. J. Mol. Sci. 15, 5246 (2014)

    Article  Google Scholar 

  9. L. Liu, Y. Li, Aerosol Air Qual. Res. 14, 453 (2014)

    CAS  Google Scholar 

  10. S. Qin, F. Xin, Y. Liu, X. Yin, W. Ma, J. Colloid Interface Sci. 356, 257 (2011)

    Article  CAS  Google Scholar 

  11. O.K. Varghese, M. Paulose, T.J. LaTempa, C.A. Grimes, Nano Lett. 9, 731 (2009)

    Article  CAS  Google Scholar 

  12. B. Srinivas, B. Shubhamangala, K. Lalitha, P. Anil Kumar Reddy, V. Durga Kumari, M. Subrahmanyam, B. R. De, Photochem. Photobiol. 87, 995 (2011)

  13. Y.-J. Yuan, Z.-T. Yu, J.-Y. Zhang, Z.-G. Zou, Dalton Trans. 41, 9594 (2012)

    Article  CAS  Google Scholar 

  14. C. Wang, X.-X. Ma, J. Li, L. Xu, F. Zhang, J. Mol. Catal. A Chem. 363, 108 (2012)

    Article  Google Scholar 

  15. S. Xie, Q. Zhang, G. Liu, Y. Wang, M. He, Y. Sun, B. Han, Chem. Commun. 52, 35 (2016)

    Article  CAS  Google Scholar 

  16. K. Rajeshwar, N.R. de Tacconi, G. Ghadimkhani, W. Chanmanee, C. Janáky, Chem Phys Chem 14, 2005 (2013)

    Article  Google Scholar 

  17. Y. Liu, L. Hua, S. Li, Desalination 258, 48 (2010)

    Article  CAS  Google Scholar 

  18. C. Finn, S. Schnittger, L.J. Yellowlees, Chem. Commun. 48, 1392 (2012)

    Article  CAS  Google Scholar 

  19. A.J. Morris, G.J. Meyer, E. Fujita, Acc. Chem. Res. 42, 1983 (2009)

    Article  CAS  Google Scholar 

  20. D. Walther, M. Ruben, S. Rau, Coord. Chem. Rev. 182, 67 (1999)

    Article  Google Scholar 

  21. G.G. Bessegato, T.T. Guaraldo, J.F. de Brito, M.F. Brugnera, M.V.B. Zanoni, Electrocatalysis 6, 415 (2015)

    Article  CAS  Google Scholar 

  22. F.M.M. Paschoal, G. Pepping, M.V.B. Zanoni, M.A. Anderson, Environmental Science & Technology 43, 7496 (2009)

    Article  CAS  Google Scholar 

  23. A.L. Abuhijleh, Inorg. Chem. Commun. 14, 759 (2011)

    Article  CAS  Google Scholar 

  24. T. Fujimori, S. Yamada, H. Yasui, H. Sakurai, Y. In, T. Ishida, Journal of Biological Inorganic Chemistry : JBIC : A Publication of the Society of Biological Inorganic Chemistry 10, 831 (2005)

    Article  CAS  Google Scholar 

  25. F.A. Sayão, J.B.S. Flor, R.C.G. Frem, S. Stulp, J.C. Cardoso, M.V.B. Zanoni, Electrocatalysis 486, 6 (2016)

    Google Scholar 

  26. S. Sato, T. Arai, T. Morikawa, K. Uemura, T.M. Suzuki, H. Tanaka, T. Kajino, J. Am. Chem. Soc. 133, 15240 (2011)

    Article  CAS  Google Scholar 

  27. J.C. Cardoso, T.M. Lizier, M.V.B. Zanoni, Appl. Catal. B Environ. 99, 96 (2010)

    Article  CAS  Google Scholar 

  28. J.C. Cardoso, M.V. Boldrin Zanoni, Sep. Sci. Technol. 45, 1628 (2010)

    Article  Google Scholar 

  29. G.G. Bessegato, J.C. Cardoso, B.F. da Silva, M.V.B. Zanoni, Appl. Catal. B Environ. 180, 161 (2016)

    Article  CAS  Google Scholar 

  30. G.G. Bessegato, J.C. Cardoso, B.F. da Silva, M.V.B. Zanoni, J. Photochem. Photobiol. A Chem. 276, 96 (2014)

    Article  Google Scholar 

  31. T.T. Guaraldo, J.F. de Brito, D. Wood, M.V.B. Zanoni, Electrochim. Acta 185, 117 (2015)

    Article  CAS  Google Scholar 

  32. H.S. Kushwaha, N.A. Madhar, B. Ilahi, P. Thomas, Scientific Reports 6, 18557 (2016)

    Article  CAS  Google Scholar 

  33. J.H. Clark, M.S. Dyer, R.G. Palgrave, C.P. Ireland, J.R. Darwent, J.B. Claridge, M.J. Rosseinsky, J. Am. Chem. Soc. 133, 1016 (2011)

    Article  CAS  Google Scholar 

  34. J.F. Brito, A.A. Silva, A.J. Cavalheiro, M.V.B. Zanoni, Int. J. Electrochem. Sci. 9, 5961 (2014)

    Google Scholar 

  35. G. Ghadimkhani, N.R. de Tacconi, W. Chanmanee, C. Janaky, K. Rajeshwar, Chem. Commun. (Camb.) 49, 1297 (2013)

    Article  CAS  Google Scholar 

  36. H. Peng, J. Lu, C. Wu, Z. Yang, H. Chen, W. Song, P. Li, H. Yin, Appl. Surf. Sci. 353, 1003 (2015)

    Article  CAS  Google Scholar 

  37. A. Fujishima, K. Honda, Bull. Chem. Soc. Jpn. 44, 1148 (1971)

    Article  CAS  Google Scholar 

  38. K. Rajeshwar, N.R. De Tacconi, G. Ghadimkhani, W. Chanmanee, C. Janáky, Chem Phys Chem 14, 2251 (2013)

    Article  CAS  Google Scholar 

  39. M.R. Singh, E.L. Clark, A.T. Bell, Physical Chemistry Chemical Physics : PCCP 17, 18924 (2015)

    Article  CAS  Google Scholar 

  40. N.S. Spinner, J.A. Vega, W.E. Mustain, Catalysis Science & Technology 2, 19 (2012)

    Article  CAS  Google Scholar 

  41. H.R.M. Jhong, S. Ma, P.J. Kenis, Current Opinion in Chemical Engineering 2, 191 (2013)

    Article  Google Scholar 

  42. D.M. Halmann, and M. Steinberg, Greenhouse Gas—Carbon Dioxide Mitigation: Science and Technology, 6th edn. (Lewis Publishers, Boca Raton, 1999), p. 61

Download references

Acknowledgements

The authors would like to express their sincerest gratitude and indebtedness to the Brazilian funding agencies FAPESP (2013/25343-8 and 2015/18109-4), CNPq (152274/2016-2 and 310421/2013-6), and CAPES for the financial support granted during the course of this research. FEG-SEM facilities were provided by LMA-IQ and X-ray diffraction measurements by GFQM-IQ. We are also grateful to Brian Newmann—the native English language content editor, for his painstaking proofreading and editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliano C. Cardoso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stülp, S., Cardoso, J.C., de Brito, J.F. et al. An Artificial Photosynthesis System Based on Ti/TiO2 Coated with Cu(II) Aspirinate Complex for CO2 Reduction to Methanol. Electrocatalysis 8, 279–287 (2017). https://doi.org/10.1007/s12678-017-0367-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0367-9

Keywords

Navigation