Skip to main content

Advertisement

Log in

Solar light-driven selective photoelectrochemical CO2 reduction to CO in aqueous media using Si nanowire arrays decorated with Au and Au-based metal nanoparticles

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

To address recent energy and environmental issues, such as global warming and resource depletion, significant interest has been shown in carbon dioxide (CO2) fixation based on photoelectrochemical processes under solar light irradiation. The present paper describes the applicability of gold nanoparticles-decorated silicon nanowire arrays (Au/SiNW) as photoelectrodes to promote CO2 reduction. The decoration with Au nanoparticles of SiNW was performed by an electroless plating utilizing surface hydrogen-terminated silicon groups, generated during the nanowire formation process. Au/SiNW exhibits efficient photoelectrochemical performance for CO2 reduction to produce CO selectively in an aqueous medium under simulated solar light irradiation owing to its vertically aligned nanowire structure and Au nanoparticles as cocatalysts. The former provides high specific surface area and light trapping effect, and the latter induces selective interaction with CO2. Moreover, a unique two-steps method for Au decoration that consists of photo-assisted deposition of copper nanoparticles and the following electroless plating to replace Cu atoms to Au ones achieves more uniform decoration of SiNW with highly dispersed core–shell structured Cu@Au nanoparticles. The resulting photoelectrode, termed Cu@Au/SiNW, shows improved selectivity toward CO production and gives a good Faradic efficiency of 72% in an aqueous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. M. Kitano, M. Matsuoka, M. Ueshima, M. Anpo, Appl. Catal. A: Gen. 325, 1 (2007)

    Article  CAS  Google Scholar 

  2. H. Tsubaki, A. Sugawara, H. Takeda, B. Gholamkhass, K. Koike, O. Ishitani, Res. Chem. Intermed. 33, 37 (2007)

    Article  CAS  Google Scholar 

  3. E.E. Barton, D.M. Rampulla, A.B. Bocarsly, J. Am. Chem. Soc. 130, 6342 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. S. Sato, T. Arai, T. Morikawa, K. Uemura, T.M. Suzuki, H. Tanaka, T. Kajino, J. Am. Chem. Soc. 133, 15240 (2011)

    Article  CAS  PubMed  Google Scholar 

  5. K. Sekizawa, K. Maeda, K. Domen, K. Koike, O. Ishitani, J. Am. Chem. Soc. 135, 4596 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. J. Mao, K. Li, T. Peng, Catal. Sci. Technol. 3, 2481 (2013)

    Article  CAS  Google Scholar 

  7. W. Tu, Y. Zhou, Z. Zou, Adv. Mater. 26, 4607 (2014)

    Article  CAS  PubMed  Google Scholar 

  8. Y. Kou, Y. Nabetani, D. Masui, T. Shimada, S. Takagi, H. Tachibana, H. Inoue, J. Am. Chem. Soc. 136, 6021 (2014)

    Article  CAS  PubMed  Google Scholar 

  9. Y. Amao, N. Shuto, Res. Chem. Intermed. 40, 3267 (2014)

    Article  CAS  Google Scholar 

  10. R. Kuriki, H. Matsunaga, T. Nakashima, K. Wada, A. Yamakata, O. Ishitani, K. Maeda, J. Am. Chem. Soc., 138, 5159, (2016)

  11. K. Iizuka, T. Wato, Y. Miseki, K. Saito, A. Kudo, J. Am. Chem. Soc. 133, 20863 (2011)

    Article  CAS  PubMed  Google Scholar 

  12. K. Teramura, Z. Wang, S. Hosokawa, Y. Sakata, T. Tanaka. Chem. Eur. J. 20, 9906 (2014)

    CAS  PubMed  Google Scholar 

  13. Z. Kang, C.H.A. Tsang, N.-B. Wong, Z. Zhang, S.-T. Lee, J. Am. Chem. Soc. 129, 12090 (2007)

    Article  CAS  PubMed  Google Scholar 

  14. F.F. Abdi, L. Han, A.H.M. Smets, M. Zeman, B. Dam, R. van de Krol, Nat. Commun. 4, 2195 (2013)

    Article  PubMed  Google Scholar 

  15. K. Sun, S. Shen, Y. Liang, P.E. Burrows, S.S. Mao, D. Wang, Chem. Rev. 114, 8662 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. L. Ji, M.D. McDaniel, S. Wang, A.B. Posadas, X. Li, H. Huang, J.C. Lee, A.A. Demkov, A.J. Bard, J.G. Ekerdt, E.T. Yu, Nat Nano 10, 84 (2015)

    Article  CAS  Google Scholar 

  17. Y. Wang, S. Fan, B. AlOtaibi, Y. Wang, L. Li, Z. Mi, Chem. Eur. J. 22, 8809 (2016)

    Article  CAS  PubMed  Google Scholar 

  18. K.Q. Peng, Y.J. Yan, S.P. Gao, J. Zhu, Adv. Mater. 14, 1164 (2002)

    Article  CAS  Google Scholar 

  19. Z. Liu, H. Wang, X.-M. Ou, C.-S. Lee, X.-H. Zhang, Chem. Commun. 48, 2815 (2012)

    Article  CAS  Google Scholar 

  20. M.T. Mayer, C. Du, D. Wang, J. Am. Chem. Soc. 134, 12406 (2012)

    Article  CAS  PubMed  Google Scholar 

  21. N. Moitra, K. Kanamori, T. Shimada, K. Takeda, Y.H. Ikuhara, X. Gao, K. Nakanishi, Adv. Funct. Mater. 23, 2714 (2013)

    Article  CAS  Google Scholar 

  22. S.K. Choi, U. Kang, S. Lee, D.J. Ham, S.M. Ji, H. Park, Adv. Energy Mater. 4, 1301614 (2014)

    Article  Google Scholar 

  23. X. Wang, K.-Q. Peng, Y. Hu, F.-Q. Zhang, B. Hu, L. Li, M. Wang, X.-M. Meng, S.-T. Lee, Nano Lett. 14, 18 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. L. Wei, J. Lin, S. Xie, W. Ma, Q. Zhang, Z. Shen, Y. Wang, Nanoscale 11, 12530 (2019)

    Article  CAS  PubMed  Google Scholar 

  25. W. Ma, M. Xie, S. Xie, L. Wei, Y. Cai, Q. Zhang, Y. Wang, J. Energy Chem. 54, 422 (2021)

    Article  CAS  Google Scholar 

  26. Z. Zhou, L. Li, Y. Niu, H. Song, X.-S. Xing, Z. Guo, S. Wu, Dalton Trans. 50, 2936 (2021)

    Article  CAS  PubMed  Google Scholar 

  27. M. Azuma, K. Hashimoto, M. Hiramoto, M. Watanabe, T. Sakata, J. Electrochem. Soc. 137, 1772 (1990)

    Article  CAS  Google Scholar 

  28. Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrochim. Acta 39, 1833 (1994)

    Article  CAS  Google Scholar 

  29. M. Gattrell, N. Gupta, A. Co, J. Electroanal. Chem. 594, 1 (2006)

    Article  CAS  Google Scholar 

  30. Y. Chen, C.W. Li, M.W. Kanan, J. Am. Chem. Soc. 134, 19969 (2012)

    Article  CAS  PubMed  Google Scholar 

  31. C.W. Li, M.W. Kanan, J. Am. Chem. Soc. 134, 7231 (2012)

    Article  CAS  PubMed  Google Scholar 

  32. H. Mistry, R. Reske, Z. Zeng, Z.-J. Zhao, J. Greeley, P. Strasser, B.R. Cuenya, J. Am. Chem. Soc. 136, 16473 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. X. Zhong, Y. Qu, Y.-C. Lin, L. Liao, X. Duan, ACS Appl. Mater. Interfaces 3, 261 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Y.M.A. Yamada, Y. Yuyama, T. Sato, S. Fujikawa, Y. Uozumi, Angew. Chem. Int. Ed. 53, 127 (2014)

    Article  CAS  Google Scholar 

  35. J.-D. Grunwaldt, C. Kiener, C. Wögerbauer, A. Baiker, J. Catal. 181, 223 (1999)

    Article  CAS  Google Scholar 

  36. S. Panigrahi, S. Basu, S. Praharaj, S. Pande, S. Jana, A. Pal, S.K. Ghosh, T. Pal, J. Phys. Chem. C 111, 4596 (2007)

    Article  CAS  Google Scholar 

  37. D.V. Leff, L. Brandt, J.R. Heath, Langmuir 12, 4723 (1996)

    Article  CAS  Google Scholar 

  38. H. Li, Z. Bian, J. Zhu, Y. Huo, H. Li, Y. Lu, J. Am. Chem. Soc. 129, 4538 (2007)

    Article  CAS  PubMed  Google Scholar 

  39. M. Metzler, A. Thorwart, S. Zeller, T. Diemant, R.J. Behm, T. Jacob, Catal. Today 244, 3 (2015)

    Article  CAS  Google Scholar 

  40. R. Zanella, S. Giorgio, C.-H. Shin, C.R. Henry, C. Louis, J. Catal. 222, 357 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The X-ray absorption measurements were performed at the BL-01B1 facility of SPring-8 at the Japan Synchrotron Radiation Research Institute (JASRI) (Nos. 2017B1469, 2016A1260, and 2015A1543).

Funding

The present work was financially supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Nos. 15K17903 and 21K05231).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. YH and MM contributed to experimental plan, data curation, and writing original draft. Material preparation, data collection and analysis were mainly performed by KM, MT, and KN. All authors checked previous versions of the manuscript and read and approved the final manuscript.

Corresponding authors

Correspondence to Yu Horiuchi or Masaya Matsuoka.

Ethics declarations

Competing interests

The authors declare no financial and non-financial competing interests that are directly or indirectly related to the work submitted for publication.

Human or animal rights

This article is not contained any results on live vertebrates and/or higher invertebrates including human subject.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4236 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horiuchi, Y., Miyazaki, K., Tachibana, M. et al. Solar light-driven selective photoelectrochemical CO2 reduction to CO in aqueous media using Si nanowire arrays decorated with Au and Au-based metal nanoparticles. Res Chem Intermed 49, 1131–1146 (2023). https://doi.org/10.1007/s11164-023-04959-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-04959-y

Keywords

Navigation