Skip to main content
Log in

Electrochemical Fabrication of Well-Defined Spherical Iridium Nanoparticles and Electrocatalytic Activity towards Carbon Monoxide Adlayer Oxidation

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

This study outlines the methodology to electrodeposit well-defined iridium nanospheres onto glassy carbon (GC) electrodes at room temperature, using a square wave potential (SWP) technique. Similar work has recently been carried out for other noble metal nanoparticles, in particular platinum and palladium. In this study, particle size and Ir loading can be controlled by altering two key parameters in the electrodeposition process; the nucleation potential and the growth duration. Ir nanoparticles were characterized using cyclic voltammetry (CV) and scanning electron microscopy (SEM). It was found that the nucleation potential and time influence not only the nucleation density but also the particle size. In addition, the electrochemical activity of the particles towards carbon monoxide (CO) adlayer oxidation was investigated as a surface test reaction. The results showed that surface morphology of the deposited particles, which could be altered using potential cycling, plays a pivotal role in determining the activity of the particles. Particles that were treated by potential cycling showed a significantly lower overpotential, in contrast to particles of similar size that were untreated. This indicates an enhancement in electrocatalytic activity due to the enrichment of surface defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Zhou, Y. Li, Catalysis based on nanocrystals with well-defined facets. Angew. Chem. Int. Ed. Engl. 51, 602–613 (2012). doi:10.1002/anie.201102619

    Article  CAS  Google Scholar 

  2. F. Maillard, M. Eikerling, O.V. Cherstiouk, S. Schreier, E. Savinova, U. Stimming, Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: the role of surface mobility. Faraday Discuss. 125, 357–377 (2004). doi:10.1039/b303911k

    Article  CAS  Google Scholar 

  3. J.M. Campelo, D. Luna, R. Luque, J.M. Marinas, A.A. Romero, Sustainable preparation of supported metal nanoparticles and their applications in catalysis. ChemSusChem 2, 18–45 (2009). doi:10.1002/cssc.200800227

    Article  CAS  Google Scholar 

  4. A.T. Bell, The impact of nanoscience on heterogeneous catalysis. Science 299, 1688–1691 (2003). doi:10.1126/science.1083671

    Article  CAS  Google Scholar 

  5. R.M. Heck, R.J. Farrauto, Automobile exhaust catalysts. Appl. Catal. A Gen. 221, 443–457 (2001). doi:10.1016/S0926-860X(01)00818-3

    Article  CAS  Google Scholar 

  6. J. Larminie, A. Dicks, Fuel Cell Systems Explained (John Wiley & Sons, Ltd, West Sussex, England, 2003). doi:10.1002/9781118878330

    Book  Google Scholar 

  7. S. Motoo, N. Furuya, Hydrogen and oxygen adsorption on Ir (111), (100) and (110) planes. J. Electroanal. Chem. Interfacial Electrochem. \ 167, 309–315 (1984). doi:10.1016/0368-1874(84)87078-1

    Article  CAS  Google Scholar 

  8. T. Pajkossy, L.A. Kibler, D.M. Kolb, Voltammetry and impedance measurements of Ir(111) electrodes in aqueous solutions. J. Electroanal. Chem. 582, 69–75 (2005). doi:10.1016/j.jelechem.2005.03.019

    Article  CAS  Google Scholar 

  9. T. Pajkossy, L.A. Kibler, D.M. Kolb, Voltammetry and impedance measurements of Ir(100) electrodes in aqueous solutions. J. Electroanal. Chem. 600, 113–118 (2007). doi:10.1016/j.jelechem.2006.04.016

    Article  CAS  Google Scholar 

  10. T. Pajkossy, D.M. Kolb, An impedance study of Ir(210) in HCl solutions. Russ. J. Electrochem. 45, 29–37 (2009). doi:10.1134/S1023193509010054

    Article  CAS  Google Scholar 

  11. P. Kaghazch, F.C. Simeone, K.A. Soliman, L.A. Kibler, T. Jacob, Bridging the gap between nanoparticles and single crystal surfaces. Faraday Discuss. 140, 9 (2009). doi:10.1039/b814058h

    Article  Google Scholar 

  12. K.A. Soliman, F.C. Simeone, L.A. Kibler, Electrochemical behaviour of nano-faceted Ir(210). Electrochem. Commun. 11, 31–33 (2009). doi:10.1016/j.elecom.2008.10.017

    Article  CAS  Google Scholar 

  13. K.A. Soliman, D.M. Kolb, L.A. Kibler, T. Jacob, Restructuring of an Ir(210) electrode surface by potential cycling. Beilstein J. Nanotechnol. 5, 1349 (2014)

    Article  CAS  Google Scholar 

  14. A. Gutsch, H. Mühlenweg, M. Krämer, Tailor-made nanoparticles via gas-phase synthesis. Small 1, 30–46 (2005). doi:10.1002/smll.200400021

    Article  CAS  Google Scholar 

  15. B.L. Cushing, V.L. Kolesnichenko, C.J. O’Connor, Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104, 3893–3946 (2004). doi:10.1021/cr030027b

    Article  CAS  Google Scholar 

  16. E.L. MacNamara, The electrodeposition of iridium. J. Electrochem. Soc. 109, 61–63 (1962)

    Article  CAS  Google Scholar 

  17. T. Ohsaka, M. Isaka, K. Hirano, T. Ohishi, Effect of ultrasound sonication on electroplating of iridium. Ultrason. Sonochem. 15, 283–288 (2008). doi:10.1016/j.ultsonch.2007.11.002

    Article  CAS  Google Scholar 

  18. A.G. Muñoz, H.J. Lewerenz, Electroplating of iridium onto single-crystal silicon: chemical and electronic properties of n-Si(111)/Ir nanojunctions. J. Electrochem. Soc. 156, D184 (2009). doi:10.1149/1.3095510

    Article  Google Scholar 

  19. L. Vázquez-Gómez, S. Cattarin, R. Gerbasi, P. Guerriero, M. Musiani, Activation of porous Ni cathodes towards hydrogen evolution by electrodeposition of Ir Nuclei. J. Appl. Electrochem. 39, 2165–2172 (2009). doi:10.1007/s10800-009-9847-9

    Article  Google Scholar 

  20. E.N. El Sawy, V.I. Birss, Nano-porous iridium and iridium oxide thin films formed by high efficiency electrodeposition. J. Mater. Chem. 19, 8244 (2009). doi:10.1039/b914662h

    Article  Google Scholar 

  21. S. Le Vot, L. Roué, D. Bélanger, Electrodeposition of iridium onto glassy carbon and platinum electrodes. Electrochim. Acta 59, 49–56 (2012). doi:10.1016/j.electacta.2011.10.019

    Article  Google Scholar 

  22. N. Tian, Z.-Y. Zhou, N.-F. Yu, L.-Y. Wang, S.-G. Sun, Direct electrodeposition of tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation. J. Am. Chem. Soc. 132, 7580–7581 (2010). doi:10.1021/ja102177r

    Article  CAS  Google Scholar 

  23. N. Tian, Z.-Y. Zhou, S.-G. Sun, Y. Ding, Z.L. Wang, Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316, 732–735 (2007). doi:10.1126/science.1140484

    Article  CAS  Google Scholar 

  24. G. García, M.T.M. Koper, Carbon monoxide oxidation on Pt single crystal electrodes: understanding the catalysis for low temperature fuel cells. ChemPhysChem 12, 2064–2072 (2011). doi:10.1002/cphc.201100247

    Article  Google Scholar 

  25. G.N. Kamau, Surface preparation of glassy carbon electrodes. Anal. Chim. Acta 207, 1–16 (1988)

    Article  CAS  Google Scholar 

  26. I. Hu, D.H. Karweik, T. Kuwana, Activation and deactivation of glassy carbon electrodes. J. Electroanal. Chem. 188, 59–72 (1985)

    Article  CAS  Google Scholar 

  27. M. Ueda, H. Dietz, A. Anders, H. Kneppe, A. Meixner, W. Plieth, Double-pulse technique as an electrochemical tool for controlling the preparation of metallic nanoparticles. Electrochim. Acta 48, 2539 (2003)

    Article  CAS  Google Scholar 

  28. T. Reier, M. Oezaslan, P. Strasser, Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal. 2, 1765–1772 (2012). doi:10.1021/cs3003098

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of the Deutsche Forschungsgemeinschaft (DFG) through FOR-1376, KI787/6-2, as well as JA1072/6-1 and KO576/25-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludwig A. Kibler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheasha, Y., Soliman, K.A., Sun, SG. et al. Electrochemical Fabrication of Well-Defined Spherical Iridium Nanoparticles and Electrocatalytic Activity towards Carbon Monoxide Adlayer Oxidation. Electrocatalysis 6, 365–372 (2015). https://doi.org/10.1007/s12678-015-0252-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-015-0252-3

Keywords

Navigation