Skip to main content
Log in

Direct Electrochemistry of Glucose Oxidase on a Three-Dimensional Porous Zirconium Phosphate–Carbon Aerogel Composite

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Biocompatible materials with large specific surface areas can play a crucial role in direct electron transfer between redox proteins and an electrode surface. Here, we report zirconium phosphate–carbon aerogel (ZrP-CA) composites with a large specific surface area and uniform nanopore distributions as matrix for glucose oxidase immobilization. The immobilized glucose oxidase displays two stable, well-defined redox peaks with an electron transfer rate constant of 9.34 s−1 in nitrogen-saturated phosphate-buffered saline (PBS) solution (0.1 M, pH 7.0), at a scan rate of 100 mV s−1. The modified electrode was also used as a glucose biosensor, which was found to exhibit a linear calibration range of 0.12–2.0 mM, sensitivity of 5.56 μA mM−1 cm−2 at an applied potential of −0.5 V, and detection limit of 34 μM based on a signal-to-noise ratio of 3. After 80 scan cycles, the decreases in the peak current were less than 8 %, indicating good stability of the as-prepared ZrP-CA. The unique characteristics of the ZrP-CA nanocomposite make it a good matrix for protein immobilization and biosensor preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Cao, L. Fang, Z. Zhao, Y. Ge, S. Piletsky, A.P.F. Turner, Hierachically structured hollow silica spheres for high efficiency immobilization of enzymes. Adv. Funct. Mater. 23, 2162–2167 (2013)

    Article  CAS  Google Scholar 

  2. Z.H. Dai, J. Ni, X.H. Huang, G.F. Lu, J.C. Bao, Direct electrochemistry of glucose oxidase immobilized on a hexagonal mesoporous silica-MCM-41 matrix. Bioelectrochemistry 70, 250–256 (2007)

    Article  CAS  Google Scholar 

  3. K. Ramani, S. Karthikeyan, R. Boopathy, L.J. Kennedy, A.B. Mandal, G. Sekaran, Surface functionalized mesoporous activated carbon for the immobilization of acidic lipase and their application to hydrolysis of waste cooked oil: Isotherm and kinetic studies. Process Biochem. 47, 435–445 (2012)

  4. X. Jiang, Y. Wu, X. Mao, X. Cui, L. Zhu, Amperometric glucose biosensor based on integration of glucose oxidase with platinum nanoparticles/ordered mesoporous carbon nanocomposite. Sens. Actuators, B 153, 158–163 (2011)

    Article  CAS  Google Scholar 

  5. S. Wu, H.X. Ju, Y. Liu, Conductive mesocellular silica-carbon nanocomposite foams for immobilization, direct electrochemistry, and biosensing of proteins. Adv. Funct. Mater. 17, 585–592 (2007)

    Article  CAS  Google Scholar 

  6. S.J. Bao, C.M. Li, J.F. Zang, X.Q. Cui, Y. Qiao, J. Guo, New nanostructured TiO2 for direct electrochemistry and glucose sensor applications. Adv. Funct. Mater. 18, 591–599 (2008)

    Article  CAS  Google Scholar 

  7. N. Caro-Jara, R. Mundaca-Uribe, C. Zaror-Zaror, J. Carpinelli-Pavisic, M. Aranda-Bustos, C. Peña-Farfal, Development of a bienzymatic amperometric glucose biosensor using mesoporous silica (MCM-41) for enzyme immobilization and its application on liquid pharmaceutical formulations. Electroanalysis 25, 308–315 (2013)

    Article  CAS  Google Scholar 

  8. X.S. Yang, X. Chen, L. Yang, W.S. Yang, Direct electrochemistry and electrocatalysis of horseradish peroxidase in alpha-zirconium phosphate nanosheet film. Bioelectrochemistry 74, 90–95 (2008)

    Article  CAS  Google Scholar 

  9. S. Sampath, O. Lev, Inert metal-modified, composite ceramic-carbon, amperometric biosensors: renewable, controlled reactive layer. Anal. Chem. 68, 2015–2021 (1996)

    Article  CAS  Google Scholar 

  10. R. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24, 3221–3227 (1989)

    Article  CAS  Google Scholar 

  11. P. Wu, Q. Shao, Y. Hu, J. Jin, Y. Yin, H. Zhang, C. Cai, Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection. Electrochim. Acta 55, 8606–8614 (2010)

    Article  CAS  Google Scholar 

  12. Z.R. Zhang, T.J. Pinnavaia, Mesostructured gamma-Al2O3 with a lathlike framework morphology. J. Am. Chem. Soc. 124, 12294–12301 (2002)

    Article  CAS  Google Scholar 

  13. Z. Yang, Y. Tang, J. Li, Y. Zhang, X. Hu, Facile synthesis of tetragonal columnar-shaped TiO2 nanorods for the construction of sensitive electrochemical glucose biosensor. Biosens. Bioelectron. 54, 528–533 (2014)

    Article  CAS  Google Scholar 

  14. S. Zuo, Y. Teng, H. Yuan, M. Lan, Direct electrochemistry of glucose oxidase on screen-printed electrodes through one-step enzyme immobilization process with silica sol–gel/polyvinyl alcohol hybrid film. Sens. Actuators, B 133, 555–560 (2008)

    Article  CAS  Google Scholar 

  15. E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal Chem 101, 19–28 (1979)

    Article  CAS  Google Scholar 

  16. J. Li, Y. Tang, J. Yang, Z. Yang, Y. Zhang, X. Hu, Cage-like PbS nanostructure for the construction of novel glucose electrochemical biosensor. Sens. Actuators, B 190, 549–554 (2014)

    Article  CAS  Google Scholar 

  17. A.P. Periasamy, Y.-J. Chang, S.-M. Chen, Amperometric glucose sensor based on glucose oxidase immobilized on gelatin-multiwalled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry 80, 114–120 (2011)

    Article  CAS  Google Scholar 

  18. K. Wang, Q.A. Liu, Q.M. Guan, J. Wu, H.N. Li, J.J. Yan, Enhanced direct electrochemistry of glucose oxidase and biosensing for glucose via synergy effect of graphene and CdS nanocrystals. Biosens. Bioelectron. 26, 2252–2257 (2011)

    Article  CAS  Google Scholar 

  19. J. Wang, Electrochemical glucose biosensors. Chem. Rev. 108, 814–825 (2008)

    Article  CAS  Google Scholar 

  20. Z.J. Yang, X.C. Huang, R.C. Zhang, J. Li, Q. Xu, X.Y. Hu, Novel urchin-like In2O3-chitosan modified electrode for direct electrochemistry of glucose oxidase and biosensing. Electrochim. Acta 70, 325–330 (2012)

    Article  CAS  Google Scholar 

  21. L.J. Yang, H.Y. Xiong, X.H. Zhang, S.F. Wang, X.G. Zhang, Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon-coated nickel modified electrode. Biosens. Bioelectron. 26, 3801–3805 (2011)

    Article  CAS  Google Scholar 

  22. H.D. Jang, S.K. Kim, H. Chang, K.M. Roh, J.W. Choi, J.X. Huang, A glucose biosensor based on TiO2-graphene composite. Biosens. Bioelectron. 38, 184–188 (2012)

    Article  CAS  Google Scholar 

  23. S.J. Park, T.D. Chung, S.K. Kang, R.A. Jeong, H.K. Boo, H.C. Kim, Glucose sensor based on glucose oxidase immobilized by zirconium phosphate. Anal. Sci. 20, 1635–1638 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China (KM201210005008), National Natural Science Foundation of China (21275014), and the Program for New Century Excellent Talents in University (NCET-12-0603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingguo Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Kou, Y., Dai, Y. et al. Direct Electrochemistry of Glucose Oxidase on a Three-Dimensional Porous Zirconium Phosphate–Carbon Aerogel Composite. Electrocatalysis 6, 341–347 (2015). https://doi.org/10.1007/s12678-015-0249-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-015-0249-y

Keywords

Navigation