Skip to main content
Log in

In Situ Analysis of Scan Rate Effects on Pt Dissolution Under Potential Cycling Using a Channel Flow Double Electrode

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

To investigate the effect of scan rate (ν), the instantaneous dissolution of Pt under potential cycling 0.5–200 mV/s was studied using a channel flow double electrode. In an anodic scan, ν affects the initiation and inhibition of Pt dissolution during oxide formation. Slow scans induce Pt dissolution earlier, but soon suppress it. The extent of dissolution, however, did not show significant changes like the oxide development does when changing the ν. In a cathodic scan, the electrochemical dissolution of Pt2+ during oxide reduction speeds up with ν. The trivial chemical dissolution of unstable PtO2 into Pt4+ also occurs and increases with increasing ν.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Katsounaros, S. Cherevko, A.R. Zeradjanin, K.J.J. Mayrhofer, Angew. Chem. Int. Ed. 53, 102 (2014)

    Article  CAS  Google Scholar 

  2. E.F. Holby, D. Morgan, J. Electrochem. Soc. 159(5), B578 (2012)

    Article  CAS  Google Scholar 

  3. J.C. Meier, C. Galeano, I. Katsounaros, A.A. Topalov, A. Kostka, F. Schuth, K.J.J. Mayrhofer, ACS Catal. 2, 832 (2012)

    Article  CAS  Google Scholar 

  4. F. Hiraoka, K. Matsuzawa, S. Mitsushima, Electrocatalysis 4, 10 (2013)

    Article  CAS  Google Scholar 

  5. A.A. Topalov, I. Katsounaros, M. Auinger, S. Cherevko, J.C. Meier, S.O. Klemm, K.J.J. Mayrhofer, Angew. Chem. Int. Ed. 51, 12613 (2012)

    Article  CAS  Google Scholar 

  6. A.A. Topalov, S. Cherevko, A.R. Zeradjanin, J.C. Meier, I. Katsounaros, K.J.J. Mayrhofer, Chem. Sci. 5, 631 (2014)

    Article  CAS  Google Scholar 

  7. L. Xing, M.A. Hossain, M. Tian, D. Beauchemin, K.T. Adjemian, G. Jerkiewicz, Electrocatalysis 5, 96 (2014)

    Article  CAS  Google Scholar 

  8. L. Xing, G. Jerkiewicz, D. Beauchemin, Anal. Chim. Acta. 785, 16 (2013)

    Article  CAS  Google Scholar 

  9. P. Jovanovič, A. Pavlišič, V.S. Šelih, M. Šala, N. Hodnik, M. Bele, S. Hočevar, M. Gaberšček, ChemCatChem 6, 449 (2014)

    Article  Google Scholar 

  10. Z. Wang, E. Tada, A. Nishikata, J. Electrochem. Soc. 161(4), F380 (2014)

    Article  CAS  Google Scholar 

  11. Z. Wang, E. Tada, A. Nishikata, J. Electrochem. Soc. 161(9), F845 (2014)

    Article  CAS  Google Scholar 

  12. G. Jerkiewicz, G. Vatankhah, J. Lessard, M.P. Soriaga, Y.S. Park, Electrochim. Acta 49, 1451 (2004)

    CAS  Google Scholar 

  13. Y. Sugawara, T. Okayasu, A.P. Yadav, A. Nishikata, T. Tsuru, J. Electrochem. Soc. 159(11), F779 (2012)

    Article  CAS  Google Scholar 

  14. H. Matsuda, J. Electroanal. Chem. 16, 153 (1968)

    CAS  Google Scholar 

  15. E.L. Redmond, B.P. Setzler, F.M. Alamgir, T.F. Fuller, Phys. Chem. Chem. Phys. 16, 5301 (2014)

    Article  CAS  Google Scholar 

  16. H. Imai, K. Izumi, M. Matsumoto, Y. Kubo, K. Kato, Y. Imai, J. Am. Chem. Soc. 131, 6293 (2009)

    Article  CAS  Google Scholar 

  17. A. Sun, J. Franc, D.D. Macdonald, J. Electrochem. Soc. 153, B260 (2006)

    Article  CAS  Google Scholar 

  18. X.P. Wang, R. Kumar, D.J. Myers, Electrochem. Solid-State Lett. 9(5), A225 (2006)

    Article  CAS  Google Scholar 

  19. R.K. Ahluwalia, S. Arisetty, X.P. Wang, X.H. Wang, R. Subbaraman, S.C. Ball, S. DeCrane, D.J. Myers, J. Electrochem. Soc. 160, F447 (2013)

    Article  CAS  Google Scholar 

  20. L.R. Merte, F. Behafarid, D.J. Miller, D. Friebel, S. Cho, F. Mbuga, D. Sokaras, R. Alonso-Mori, T. Weng, D. Nordlund, A. Nilsson, B.R. Cuenya, ACS Catal. 2, 2371 (2012)

    Article  CAS  Google Scholar 

  21. U.A. Paulus, T.J. Schmidt, H.A. Gasteiger, R.J. Behm, J. Electroanal. Chem. 495, 134 (2001)

    Article  CAS  Google Scholar 

  22. V. Stamenkovic, N.M. Markovic, P.N. Ross Jr., J. Electroanal. Chem. 500, 44 (2001)

    Article  CAS  Google Scholar 

  23. V.A. Sethuraman, J.W. Weidner, A.T. Haug, S. Motupally, L.V. Protsailo, J. Electrochem. Soc. 155(1), B50 (2008)

    Article  CAS  Google Scholar 

  24. J.A. Gilbert, N.N. Kariuki, R. Subbaraman, A.J. Kropf, M.C. Smith, E.F. Holby, D. Morgan, D.J. Myers, J. Am. Chem. Soc. 134, 14823 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongqi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Tada, E. & Nishikata, A. In Situ Analysis of Scan Rate Effects on Pt Dissolution Under Potential Cycling Using a Channel Flow Double Electrode. Electrocatalysis 6, 179–184 (2015). https://doi.org/10.1007/s12678-014-0232-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-014-0232-z

Keywords

Navigation