Skip to main content
Log in

Effect of Lithium and Potassium Cations on the Electrocatalytic Properties of Carbon and Manganese Oxide Electrocatalysts Towards the Oxygen Reduction Reaction in Concentrated Alkaline Electrolyte

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The impact of alkaline cations (Li+ and K+) on the electrocatalytic properties of high-surface-area carbon (HSAC) and nanometric manganese oxides (MnOx) deposited onto HSAC (MnOx/C) used as oxygen reduction reaction (ORR) electrodes has been studied in concentrated LiOH or KOH media. The electrochemical characterizations firstly reveal that HSAC have good ORR electrocatalytic properties in these strong alkaline electrolytes, in agreement with the literature. However, although MnOx/C exhibits high ORR activity in NaOH and KOH media below 1 M (Roche et al., J Phys Chem C 111:1434, 2007), the present study reveals their deactivation in concentrated LiOH or KOH electrolytes because of an insufficient activity of water. The latter is indeed not compatible with a sufficient presence of protons in solution, thereby limiting the necessary proton insertion into the MnOx lattice, a prerequisite for ORR activity (Roche et al., J Phys Chem C 111:1434, 2007). In addition, when LiOH electrolyte is used, another effect penalizes the electrode performances; Li+ ions may insert into the MnOx lattice and stabilize both the Mn atoms at the oxidation state 3 and the oxygen groups at the carbon surface, which prevents their role of redox mediating species and further blocks the catalytic process, eventually yielding increased ORR overpotential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Accurately measuring the surface area of MnOx or MnOx/C catalysts is very difficult, and therefore current densities are usually normalized to the mass of active material in such case.

  2. Nevertheless, effects of the carbon pretreatments (chemical, thermal, etc.) are hardly predictable because of their dependence to various parameters [48].

References

  1. I. Roche, E. Chainet, M. Chatenet, J. Vondrak, Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: physical characterizations and ORR mechanism. J Phys Chem C 111, 1434 (2007)

    Article  CAS  Google Scholar 

  2. M. Chatenet, Proc. Séminaire IDEES, Paris, 2010

  3. A. De Guibert, Proc. Séminaire IDEES, Paris, 2010

  4. P. Stevens, Proc. Séminaire IDEES, Paris, 2010

  5. K.M. Abraham, Z. Jiang, A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1 (1996)

    Article  CAS  Google Scholar 

  6. T. Ogasawara, A. Débart, M. Holzapfel, P. Novák, P.G. Bruce, Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390 (2006)

    Article  CAS  Google Scholar 

  7. J. Read, Characterization of the lithium/oxygen organic electrolyte battery. J. Electrochem. Soc. 149, A1190 (2002)

    Article  CAS  Google Scholar 

  8. P. Stevens, G. Toussaint, G. Caillon, P. Viaud, P. Vinatier, C. Cantau, O. Fichet, C. Sarrazin, M. Mallouki, Development of a lithium air rechargeable battery. ECS Trans. 28, 1 (2010)

    Article  CAS  Google Scholar 

  9. S.J. Visco, E. Nimon, B. Katz, The development of high energy density lithium/air and lithium/water batteries with no self-discharge. ECS Meeting Abstracts 602, 389 (2006)

    Google Scholar 

  10. S.J. Visco, E. Nimon, B. Katz, L.C.D. Jongle, M.Y. Chu, Proc. The 12nd International Meeting on Lithium Batteries, Nara, 2004

  11. F. Moureaux, Etude des réactions mettant en jeu l'oxygène dans un système électrochimique lithium-air aqueux rechargeable électriquement. Institut Polytechnique de Grenoble, 2011.

  12. F. Moureaux, P. Stevens, G. Toussaint, M. Chatenet, Development of an oxygen-evolution electrode from 316 L stainless steel: application to the OER in aqueous lithium-air batteries. J Power Sources 229, 123 (2013)

    Article  CAS  Google Scholar 

  13. L. Jörissen, Bifunctional oxygen/air electrodes. J Power Sources 155, 23 (2006)

    Article  Google Scholar 

  14. D.S. Strmcnik, K. Kodama, D. van der Vliet, J.P. Greeley, V.R. Stamenkovic, N.M. Markovic, The role of non-covalent interactions in electrocatalytic fuel–cell reactions on platinum. Nat. Chem. 1, 466 (2009)

    Article  CAS  Google Scholar 

  15. J. Suntivich, E. Perry, H. Gasteiger, Y. Shao-Horn, The influence of the cation on the oxygen reduction and evolution activities of oxide surfaces in alkaline electrolyte. Electrocatalysis (2013 in press)

  16. P. Bezdicka, T. Grygar, B. Klapste, J. Vondrak, MnOx/C composites as electrode materials. I. Synthesis, XRD and cyclic voltammetric investigation. Electrochim. Acta 45, 913 (1999)

    Article  CAS  Google Scholar 

  17. I. Roche, Catalyseurs de piles à combustible à membrane polymère échangeuse anionique. Institut Polytechnique de Grenoble, Grenoble, 2007

  18. F. Gloaguen, F. Andolfatto, R. Durand, P. Ozil, Kinetic study of electrochemical reactions at catalyst-recast ionomer interfaces from thin active layer modeling. J. Appl. Electrochem. 24, 863 (1994)

    Article  CAS  Google Scholar 

  19. J. McBreen, The electrochemistry of [beta]-MnO2 and [gamma]-MnO2 in alkaline electrolyte. Electrochim. Acta 20, 221 (1975)

    Article  CAS  Google Scholar 

  20. J. Vondrak, B. Klapste, J. Velicka, M. Sedlarikova, J. Reiter, I. Roche, E. Chainet, J.F. Fauvarque, M. Chatenet, Electrochemical activity of manganese oxide/carbon-based electrocatalysts. J New Mat Electrochem Sys 8, 209 (2005)

    CAS  Google Scholar 

  21. J.P. Diard, B. Le Gorrec, C. Montella. Cinétique électrochimique Herman, Paris, 1996

  22. A.J. Bard, L.R. Faulkner, Electrochemical methods, 2nd edn. (Wiley, New York, 2001)

    Google Scholar 

  23. M. Chatenet, M. Aurousseau, R. Durand, Electrochemical measurement of the oxygen diffusivity and solubility in concentrated alkaline media on rotating ring-disk and disk electrodes—application to industrial chlorine–soda electrolyte. Electrochim. Acta 45, 2823 (2000)

    Article  CAS  Google Scholar 

  24. M. Chatenet, M. Aurousseau, R. Durand, Comparative methods for gas diffusivity and solubility determination in extreme media: application to molecular oxygen in an industrial chlorine–soda electrolyte. Ind. Eng. Chem. Res. 39, 3083 (2000)

    Article  CAS  Google Scholar 

  25. M. Chatenet, M.B. Molina-Concha, N. El-Kissi, G. Parrour, J.-P. Diard, Direct rotating ring-disk measurement of the sodium borohydride diffusion coefficient in sodium hydroxide solutions. Electrochim. Acta 54, 4426 (2009)

    Article  CAS  Google Scholar 

  26. V.M.M. Lobo, Handbook of electrolyte solutions. Elsevier, Amsterdam, 1990

  27. B.G. Pound, R.P. Singh, D.D. Macdonald, A thermodynamic framework for estimating the efficiencies of alkaline batteries. J Power Sources 18, 1 (1986)

    Article  CAS  Google Scholar 

  28. M. Chatenet, Cathode à air pour l'électrolyse chlore-soude. Institut Polytechnique de Grenoble, 2000

  29. M. Chatenet, L. Génies-Bultel, M. Aurousseau, R. Durand, F. Andolfatto, Oxygen reduction on silver catalysts in solutions containing various concentrations of sodium hydroxide—comparison with platinum. J. Appl. Electrochem. 32, 1131 (2002)

    Article  CAS  Google Scholar 

  30. M. Chatenet, M. Aurousseau, R. Durand, F. Andolfatto, Silver–platinum bimetallic catalysts for oxygen cathodes in chlor-alkali electrolysis—comparison with pure platinum. J. Electrochem. Soc. 150, D47 (2003)

    Article  CAS  Google Scholar 

  31. B. Klapste, J. Vondrak, J. Velicka, MnOx/C composites as electrode materials II. Reduction of oxygen on bifunctional catalysts based on manganese oxides. Electrochim. Acta 47, 2365 (2002)

    Article  CAS  Google Scholar 

  32. L.Q. Mao, D. Zhang, T. Sotomura, K. Nakatsu, N. Koshiba, T. Ohsaka, Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts. Electrochim. Acta 48, 1015 (2003)

    Article  CAS  Google Scholar 

  33. K. Kinoshita, Carbon, electrochemical and physicochemical properties (Wiley, New York, 1988)

    Google Scholar 

  34. I. Morcos, E. Yeager, Kinetic studies of the oxygen-peroxide couple on pyrolytic graphite. Electrochim. Acta 15, 953 (1970)

    Article  CAS  Google Scholar 

  35. E. Yeager, J.A. Molla, S. Gupta, in Electrochemical properties of graphite and carbon, ed. by S. Sarangapani, J.R. Akridge, B. Schumm. Proceedings of the Workshop on the Electrochemistry of Carbon, vol. 84-5 (Cleveland, USA, 1984), pp. 123–157

  36. A.J. Appleby, J. Marie, Kinetics of oxygen reduction on carbon materials in alkaline solution. Electrochim. Acta 24, 195 (1979)

    Article  CAS  Google Scholar 

  37. J. Vondrak, B. Klapste, J. Velicka, M. Sedlarikova, V. Novak, J. Reiter, Carbon/manganese oxide based fuel cell electrocatalyst using "Flywheel" principle. J New Mat Electrochem Sys 8, 1 (2005)

    CAS  Google Scholar 

  38. A.C. Garcia, A.D. Herrera, E.A. Ticianelli, M. Chatenet, C. Poinsignon, Evaluation of several carbon-supported nanostructured Ni-doped manganese oxide materials for the electrochemical reduction of oxygen. J. Electrochem. Soc. 158, B290 (2011)

    Article  CAS  Google Scholar 

  39. A. Schneider, L. Colmenares, Y.E. Seidel, Z. Jusys, B. Wickman, B. Kasemo, R.J. Behm, Transport effects in the oxygen reduction reaction on nanostructured, planar glassy carbon supported Pt/GC model electrodes. Phys. Chem. Chem. Phys. 10, 1931 (2008)

    Article  CAS  Google Scholar 

  40. P.S. Ruvinskiy, A. Bonnefont, C. Pham-Huu, E.R. Savinova, Using ordered carbon nanomaterials for shedding light on the mechanism of the cathodic oxygen reduction reaction. Langmuir 27, 9018 (2011)

    Article  CAS  Google Scholar 

  41. A.C. Garcia, F.H.B. Lima, E.A. Ticianelli, M. Chatenet, Carbon-supported nickel-doped manganese oxides as electrocatalysts for the oxygen reduction reaction in the presence of sodium borohydride. J Power Sources 222, 305 (2013)

    Article  CAS  Google Scholar 

  42. M. Chatenet, F. Micoud, I. Roche, E. Chainet, J. Vondrak, Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte—part II. O2 reduction. Electrochim. Acta 51, 5452 (2006)

    Article  CAS  Google Scholar 

  43. T. Nagaoka, T. Sakai, K. Ogura, T. Yoshino, Oxygen reduction at electrochemically treated glassy carbon electrodes. Anal. Chem. 58, 1953 (1986)

    Article  CAS  Google Scholar 

  44. K. Tammeveski, K. Kontturi, R.J. Nichols, R.J. Potter, D.J. Schiffrin, Surface redox catalysis for O2 reduction on quinone-modified glassy carbon electrodes. J. Electroanal. Chem. 515, 101 (2001)

    Article  CAS  Google Scholar 

  45. R.J. Taylor, A.A. Humffray, Electrochemical studies on glassy carbon electrodes: II. Oxygen reduction in solutions of high pH (pH > 10). J. Electroanal. Chem. Interf Electrochem 64, 63 (1975)

    Article  CAS  Google Scholar 

  46. J. Xu, W. Huang, R.L. McCreery, Isotope and surface preparation effects on alkaline dioxygen reduction at carbon electrodes. J. Electroanal. Chem. 410, 235 (1996)

    Article  Google Scholar 

  47. A. Swiatkowski, M. Pakula, S. Biniak, Cyclic voltammetric studies of chemically and electrochemically generated oxygen species on activated carbons. Electrochim. Acta 42, 1441 (1997)

    Article  CAS  Google Scholar 

  48. C. Song, J. Zhang, Electrocatalytic oxygen reduction reaction, in PEM fuel cell electrocatalysts and catalyst layers, ed. by J. Zhang (Springer, London, 2008), pp. 89–134

    Chapter  Google Scholar 

  49. E. Yeager, Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. J. Mol. Catal. 38, 5 (1986)

    Article  CAS  Google Scholar 

  50. F. Maillard, P. Simonov, E.R. Savinova, Carbon materials as support for fuel cells electrocatalysts, in Carbon materials for catalysis, ed. by P. Serp, J.L. Figueiredo, vol. 5 (Wiley, New York, 2009), pp. 429–480

    Google Scholar 

  51. F. Rodriguez-Reinoso, The role of carbon materials in heterogeneous catalysis. Carbon 36, 159 (1998)

    Article  CAS  Google Scholar 

  52. I. Roche, K. Scott, Carbon-supported manganese oxide nanoparticles as electrocatalysts for oxygen reduction reaction (ORR) in neutral solution. J. Appl. Electrochem. 39, 197 (2009)

    Article  CAS  Google Scholar 

  53. S. Trasatti, O.A. Petrii, Real surface area measurements in electrochemistry. Pure Appl Chem 63, 711 (1991)

    Article  CAS  Google Scholar 

  54. M. Chatenet, L. Dubau, N. Job, F. Maillard, The (electro)catalyst|membrane interface in the proton exchange membrane fuel cell: similarities and differences with non-electrochemical catalytic membrane reactors. Catal. Today 156, 76 (2010)

    Article  CAS  Google Scholar 

  55. I. Kruusenberg, J. Leis, M. Arulepp, K. Tammeveski, Oxygen reduction on carbon nanomaterial-modified glassy carbon electrodes in alkaline solution. J Solid State Electrochem 14, 1269 (2010)

    Article  CAS  Google Scholar 

  56. D. Zhai, B. Li, C. Xu, H. Du, Y. He, C. Wei, F. Kang, A study on charge storage mechanism of [alpha]-MnO2 by occupying tunnels with metal cations (Ba2+, K+). J Power Sources 196, 7860 (2011)

    Article  CAS  Google Scholar 

  57. C. Xu, C. Wei, B. Li, F. Kang, Z. Guan, Charge storage mechanism of manganese dioxide for capacitor application: effect of the mild electrolytes containing alkaline and alkaline-earth metal cations. J Power Sources 196, 7854 (2011)

    Article  CAS  Google Scholar 

  58. M. Minakshi, P. Singh, T.B. Issa, S. Thurgate, R. De Marco, Lithium insertion into manganese dioxide electrode in MnO2/Zn aqueous battery: part III. Electrochemical behavior of [gamma]-MnO2 in aqueous lithium hydroxide electrolyte. J Power Sources 153, 165 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from Agence Nationale de la Recherche et de la Technologie (ANRT) is gratefully acknowledged. MC thanks Jiri Vondràk for providing the (Ni)MnOx/C materials and Fabio H. B. Lima for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Chatenet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 232 kb)

Appendix

Appendix

The oxygen transport parameters of the electrolyte were measured in the two electrolytes investigated in this study. The data, given in Table 5, were acquired with a Pt rotating ring disk electrode, by following the procedure described by Chatenet et al. [23].

Table 5 Electrolyte parameters measured on a Pt rotating ring disk electrode (T = 25 °C; \( {P_{{{{\mathrm{O}}_2}}}} = 1{0^5}\ \mathrm{Pa} \))

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moureaux, F., Stevens, P. & Chatenet, M. Effect of Lithium and Potassium Cations on the Electrocatalytic Properties of Carbon and Manganese Oxide Electrocatalysts Towards the Oxygen Reduction Reaction in Concentrated Alkaline Electrolyte. Electrocatalysis 4, 123–133 (2013). https://doi.org/10.1007/s12678-013-0127-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-013-0127-4

Keywords

Navigation