Skip to main content
Log in

Electrochemical Characterization of DSA®-Type Electrodes Using Niobium Substrate

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

This paper describes the electrochemical characterization of DSA®-type electrodes using niobium substrate, and the results were compared with traditional DSA®-type oxide electrodes, i.e., using titanium substrate. The surface morphology, electrocatalytic activity, and stability of the coating were investigated by scanning electron microscopy, energy dispersive X-ray spectrometry, cyclic voltammetry, electrochemical impedance spectroscopy (EIS), and lifetime tests. EIS measurements were recorded at a constant potential between 0.2 and 1.0 V vs Ag/AgCl, in the frequency range of 5 mHz to 100 kHz, using the “single sine” method and a sine wave amplitude of 5 mV (p/p). After testing a number of different equivalent circuits, we found that the whole set of data in the double layer domain of the electrodes can be fitted by assuming the circuits R s(CPEf R f)(C dl R ct), R s(CPEf R f)(CPEdl R ct), and R sCPEf G(CPEdl R ct). The results suggest the formation of a less conducting film on the Nb substrate when compared to Ti substrate. The findings of this work, such as difficult adherence of coating on niobium, reduction of voltammetric charge, and short lifetime of electrodes prepared on Nb substrate, suggest that the substitution of titanium by niobium is unfeasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Trasatti S, Lodi G (1981) In: Trasatti S (ed) Electrodes of conductive metallic oxides, part B. Elsevier, Amsterdam

    Google Scholar 

  2. Santana MHP, de Faria LA, Boodts JFC (2004) Electrochim Acta 49(12):1925

    Article  CAS  Google Scholar 

  3. Ma H, Liu C, Liao J, Su Y, Xue X, Xing W (2006) J Mol Catal 247(1–2):7

    Article  CAS  Google Scholar 

  4. Forti JC, Olivi P, De Andrade AR (2003) J Electrochem Soc 150(4):E222

    Article  CAS  Google Scholar 

  5. Comninellis C, de Battisti A (1996) J Chim Phys 93:673

    CAS  Google Scholar 

  6. Kim JW, Park SM (1999) J Eletrochem Soc 146:1075

    Article  CAS  Google Scholar 

  7. Rajkumar D, Byung JS, Kim JG (2007) Dyes Pigm 72(1):1

    Article  Google Scholar 

  8. Pinheiro L, Pelegrini R, Bertazzoli R, Motheo AJ (2005) Appl Catal B: Environ 57(2):75

    Article  Google Scholar 

  9. Malpass GRP, Miwa DW, Machado SAS, Olivi P, Motheo AJ (2006) J Hazard Mater 137(1):565

    Article  CAS  Google Scholar 

  10. Alves PDP, Spagnol M, Tremiliosi-Filho G, de Andrade AR (2004) J Braz Chem Soc 15(5):626

    Article  CAS  Google Scholar 

  11. Moust C, Foti G, Comninellis C, Reid V (1999) Electrochim Acta 45:451

    Article  Google Scholar 

  12. Forti JC, Olivi P, De Andrade AR (2001) Electrochim Acta 47:913

    Article  CAS  Google Scholar 

  13. De Nora O (1971) Chem Ing Tech 43:182

    Article  Google Scholar 

  14. Horacek J, Puschaver S (1971) Chem Eng Prog 67:71

    Google Scholar 

  15. Koziol KR, Rathjen HC, Wenk EF, Fischer AW (1978) J Electrochem Soc 123:163

    Google Scholar 

  16. Trasatti S (2000) Electrochim Acta 45:2377

    Article  CAS  Google Scholar 

  17. Vercesi GP, Rolewicz J, Comninellis C, Hiden J (1991) Thermochim Acta 176:31

    Article  CAS  Google Scholar 

  18. Dekker M (1974) Encyclopedia of electrochemistry of the elements, v. II. In: Bard AJ (ed). Marcell Dekker, New York, pp 53–123

  19. Mineração e Metalurgia, nº 32, Área de Operações Industriais 2, Gerência Setorial 3, abril de 2000

  20. Samet Y, Elaoud SC, Ammar S, Abdelhedi R (2006) J Hazard Mater B138:614

    Article  Google Scholar 

  21. Motheo AJ, Gonzalez ER, Tremiliosi-Filho G, Olivi P, De Andrade AR, Kokoh KB, Leger J-M, Belgsir EM, Lamy C (2000) J Braz Chem Soc 11(1):16

    Article  CAS  Google Scholar 

  22. Ardizzone S, Fregonara G, Trasatti S (1990) Electrochimica Acta 35(1):263

    Article  CAS  Google Scholar 

  23. Trasatti S, Kurwell P (1994) Platinum Metals Review 38(2):46

    CAS  Google Scholar 

  24. Burke LD, Murphy OJ (1979) J Electroanal Chem 96:19

    Article  CAS  Google Scholar 

  25. Terezo AJ, Pereira EC (1999) Electrochim Acta 44:4507

    Article  CAS  Google Scholar 

  26. Tilak BV, Birss VI, Wang J, Chen CP, Rangarajan SK (2001) J Electrochem Soc 148:112

    Article  Google Scholar 

  27. Sugimoto W, Iwata H, Yokoshima K, Murakami Y, Takasu Y (2005) J Phys Chem B 109:7330

    Article  CAS  Google Scholar 

  28. de Carvalho LA, de Andrade AR, Bueno PR (2006) Quim Nova 29:786

    Google Scholar 

  29. Terezo AJ, Bisquert J, Pereira EC, Garcia-Belmonte G (2001) J Electroanal Chem 508:59

    Article  CAS  Google Scholar 

  30. Horvat-Radosevic V, Kvastek K, Vukovic M, Marijan D (1999) J Electroanal Chem 463:29

    Article  CAS  Google Scholar 

  31. Lasia A (1995) J Electroanal Chem 397:27

    Article  Google Scholar 

  32. Gerischer H (1951) Z Phys Chem 198:216

    Google Scholar 

  33. Smith DE (1970) In: Bard AJ (ed) Electroanalytical chemistry, vol 1. Marcel Dekker, New York, pp 44–69

    Google Scholar 

  34. Boukamp BA, Bouwmeester HJM (2003) Solid State Ionics 157:29

    Article  CAS  Google Scholar 

  35. Ribeiro J, de Andrade AR (2006) J Electroanal Chem 592:153

    Article  CAS  Google Scholar 

  36. Beck F (1989) Electrochim Acta 34:811

    Article  CAS  Google Scholar 

  37. Martelli GN, Ornelas R, Faita G (1994) Electrochim Acta 32:1551

    Article  Google Scholar 

  38. Jovanovic VM, Dekanski A, Despotov P, Nikolic BZ, Atanasoski RT (1992) J Electroanal Chem 339:147

    Article  CAS  Google Scholar 

  39. Panic VV, Dekanski A, Milonjic SK, Atanasoski RT, Nilolic BZ (1999) Colloids Surf A157:269

    Google Scholar 

  40. Loucka T (1977) J Appl Electrochem 7:211

    Article  CAS  Google Scholar 

  41. Iwakura C, Sakamoto K (1985) J Electrochem Soc 132(10):2420

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank FAPESP and Carbocloro S.A. Indústrias Químicas for funding this work and the supply of niobium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliane C. Forti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forti, J.C., Ribeiro, J., Lanza, M.R.V. et al. Electrochemical Characterization of DSA®-Type Electrodes Using Niobium Substrate. Electrocatal 1, 129–138 (2010). https://doi.org/10.1007/s12678-010-0020-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-010-0020-3

Keywords

Navigation