Skip to main content
Log in

Structural and electrochemical analysis of chemically synthesized microcubic architectured lead selenide thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present work deals with the synthesis of lead selenide (PbSe) thin films by simple and cost-effective chemical bath deposition method with variation in deposition time. The structural, morphological, and electrochemical properties of as-deposited thin films were examined using characterization techniques such as X-ray diffraction spectroscopy (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), galvanostatic charge–discharge and electrochemical impedance spectroscopy. XRD reveals formation of rock salt phase cubic structured PbSe. FE-SEM images show the formation of microcubic structured morphology. The existence of the PbSe is confirmed from the XPS analysis. On the other hand, CV curves show four reaction peaks corresponding to oxidation [PbSe and Pb(OH)2] and reduction (PbO2 and Pb(OH)2) at the surface of PbSe thin films. The PbSe:2 sample deposited for 80 min. shows maximum specific capacitance of 454 ± 5 F g− 1 obtained at 0.25 mA cm− 2 current density. The maximum energy density of 69 Wh kg− 1 was showed by PbSe:2 electrode with a power density of 1077 W kg− 1. Furthermore, electrochemical impedance studies of PbSe:2 thin film show 80 ± 3% cycling stability even after 500 CV cycles. Such results show the importance of microcubic structured PbSe thin film as an anode in supercapacitor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Ardakania, M. Holl, Prog. Mater. Sci. 87, 221 (2017)

    Article  Google Scholar 

  2. C. Hou, M. Zhang, A. Halder, Q. Chi, Electrochim. Acta 242, 202 (2017)

    Article  Google Scholar 

  3. K. Pathakoti, M. Manubolu, H. Hwang, J. Food Drug Anal. 25, 245 (2017)

    Article  Google Scholar 

  4. P. Lund, Microelectron. Eng. 108, 84 (2013)

    Article  Google Scholar 

  5. S. Sarangapani, B.V. Tilak, C.P. Chen, J. Electrochem. Soc. 143, 3791 (1996)

    Article  Google Scholar 

  6. B.E. Conway, Electrochemical Supercapacitors (Kluwer Academic/Plenum Publishers, New York, 1999)

    Book  Google Scholar 

  7. C. Subramanian, H. Zhu, R. Vajtai, P.M. Ajayan, B. Wei, J. Phys. Chem. B 109, 20207 (2005)

    Article  Google Scholar 

  8. Q. Tang, M. Chen, L. Wang, G. Wang, J. Power Sources 273, 654 (2015)

    Article  ADS  Google Scholar 

  9. A. Shinde, N. Chodankar, V. Lokhande, A. Lokhande, T. Ji, J. Kim, C. Lokhande, RSC Adv. 6, 58839 (2016)

    Article  Google Scholar 

  10. W. Wang, S. Guo, I. Lee, K. Ahmed, J. Zhong, Z. Favors, F. Zaera, M. Ozkan, C. Ozkan, Sci. Rep. 4, 4452 (2014)

    Article  ADS  Google Scholar 

  11. W. Liao, B. Wang, Z. Liu, Int. J. Hydrog. Energy 42, 10962 (2017)

    Article  Google Scholar 

  12. L. Zhang, B. Zhang, L. Ning, S. Li, Y. Zheng, Opt. Commun. 383, 371 (2017)

    Article  ADS  Google Scholar 

  13. S. Lee, Y. Wang, Y. Liu, D. Lee, K. Lee, D. Lee, T. Lian, Chem. Phys. Lett. 683, 342 (2017)

    Article  ADS  Google Scholar 

  14. Y. Suh, S. Suh, S. Lee, G. Kim, Thin Solid Films 628, 148 (2017)

    Article  ADS  Google Scholar 

  15. W. Feng, X. Wang, F. Chen, W. Liu, H. Zhou, S. Wang, H. Li, Thin Solid Films 578, 25 (2015)

    Article  ADS  Google Scholar 

  16. E. Torresa, M. López, Y. Matsumoto, J. Salazarc, Mater. Res. Bull. 80, 96 (2016)

    Article  Google Scholar 

  17. B. Wagner, N. Singh, S. McLaughlin, A. Berghmans, D. Kahler, D. Knuteson, J. Cryst. Growth 311, 1080 (2009)

    Article  ADS  Google Scholar 

  18. D. Talapin, H. Yu, E. Shevchenko, A. Lobo, C. Murray, J. Phys. Chem. C 111, 14049 (2007)

    Article  Google Scholar 

  19. T. Bhat, S. Vanalakar, R. Devan, S. Mali, S. Pawar, Y. Ma, C. Hong, J. Kim, P. Patil, J. Mater. Sci. Mater. Electron. 27, 4996 (2016)

    Article  Google Scholar 

  20. I. Urbiola, J. Martínez, J. Borja, C. García, R. Bon, Y. Vorobiev, Energy Proc. 57, 24 (2014)

    Article  Google Scholar 

  21. A. Osherov, M. Shandalov, V. Ezersky, Y. Golan, J. Cryst. Growth 304, 169 (2007)

    Article  ADS  Google Scholar 

  22. L. Jin, Z. Yabo, Y. Dagen, H. Zhanjun, J. Cryst. Growth 304, 169 (2007)

    Article  Google Scholar 

  23. E. El-Menyawy, G. Mahmoud, S. Gad, A. Azab, F. Terr, J. Inorg. Organomet. Polym. Mater. 25, 1044 (2015)

    Article  Google Scholar 

  24. C. Zhang, Z. Kang, E. Shen, E. Wang, L. Gao, F. Luo, C. Tian, C. Wang, Y. Lan, J. Phys. Chem. B 110, 184 (2006)

    Article  Google Scholar 

  25. P. Isi, P. Ekwo, Res. J. Eng. Sci 2, 15 (2013)

    Google Scholar 

  26. S. Gorer, G. Hodes, J. Phys. Chem. 98, 5338 (1994)

    Article  Google Scholar 

  27. Y. Lau, D. Chernak, M. Bierman, S. Jin, J. Mater. Chem. 19, 934 (2009)

    Article  Google Scholar 

  28. R. Perez, G. Tellez, U. Rosas, A. Torres, J. Tecorralco, L. Lima, O. Moreno, Mater. Sci. Eng. A 3, 1 (2013)

    Google Scholar 

  29. J. Cui, F. Guo, X. Liu, Chem. Lett. 34, 170 (2005)

    Article  Google Scholar 

  30. S. Mahmoud, O. Hamid, FIZIKA A (Zagreb) 10, 21 (2001)

    Google Scholar 

  31. W. Burton, N. Cabrera, F. Frank, Nature 163, 398 (1949)

    Article  ADS  Google Scholar 

  32. Y. Xiong, Y. Xia, Adv. Mater. 19, 3385 (2003)

    Article  Google Scholar 

  33. Z. Wang, J. Phys. Chem. B 104, 1153 (2000)

    Article  Google Scholar 

  34. I. Pintilie, E. Pentia, L. Pintilie, D. Petre, C. Constantin, T. Botila, J. Appl. Phys. 78, 1713 (1995)

    Article  ADS  Google Scholar 

  35. C. Li, T. Bai, F. Li, L. Wang, X. Wu, L. Yuan, Z. Shi, S. Feng, Cryst. Eng. Commun. 15, 597 (2013)

    Article  Google Scholar 

  36. J. Petroski, Z. Wang, T. Green, M. Sayed, J. Phys. Chem. B 102, 3316 (1998)

    Article  Google Scholar 

  37. H. abrisch, L. Kjeldgaard, E. Johnson, U. Dahmen, Acta Mater. 49, 4259 (2001)

    Article  Google Scholar 

  38. Y. Tang, W. Cheng, Nanoscale 7, 16151 (2015)

    Article  ADS  Google Scholar 

  39. G. Xi, J. Ye, Inorg. Chem. 49, 2302 (2010)

    Article  Google Scholar 

  40. S. Lee, S. Cho, J. Cheon, Adv. Mater. 15, 441 (2003)

    Article  Google Scholar 

  41. S. Amelinckx, Philos. Mag. 44, 337 (1953)

    Article  Google Scholar 

  42. R. Penn, J. Banfield, Science 281, 969 (1998)

    Article  ADS  Google Scholar 

  43. Q. Wang, G. Chen, H. Yin, J. Mater. Chem. A 1, 15355 (2013)

    Article  Google Scholar 

  44. R. Trujillo, E. Rosendo, M. Ortega, A. Sanchez, J. Gracia, T. Dıaz, G. Nieto, G. Garcıa, J. Lopez, M. Pacio, Nanotechnology 23, 185602 (2012)

    Article  ADS  Google Scholar 

  45. S. Mali, S. Desai, S. Kalagi, C. Betty, P. Bhosale, R. Devan, Y. Ma, P. Patil, Dalton Trans. 41, 6130 (2012)

    Article  Google Scholar 

  46. J. Zhu, H. Wang, S. Xu, H. Chen, Langmuir 18, 3306 (2002)

    Article  Google Scholar 

  47. J. Moulder, W. Stickle, P. Sobol, K. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp, Eden Prairie, 1992), pp. 92–93

    Google Scholar 

  48. S. Pawar, R. Devan, D. Patil, A. Moholkar, M. Gang, Y. Ma, J. Kim, P. Patil, Electrochim. Acta 98, 244 (2013)

    Article  Google Scholar 

  49. R. Devan, C. Lin, S. Gao, C. Cheng, Y. Liou, Y. Ma, Phys. Chem. Chem. Phys. 13, 13441 (2011)

    Article  Google Scholar 

  50. J. Xie, F. Tu, Q. Suc, G. Du, S. Zhang, T. Zhu, G. Cao, X. Zhao, Nano Energy 5, 122 (2014)

    Article  Google Scholar 

  51. E. Gobert, O. Vittoki, Electrichim. Acta 33, 245 (1998)

    Article  Google Scholar 

  52. X. Chen, Y. Zhu, Z. Xing, G. Tang, H. Fan, J. Mater. Sci. Mater. Electron. 27, 1155 (2016)

    Google Scholar 

  53. N. Chodankar, G. Gund, D. Dubal, C. Lokhande, RSC Adv. 4, 61503 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

One of the author TSB is thankful to the University Grants Commission (UGC) New Delhi, India for awarding the UGC-BSR (JRF) fellowship (Grant no. F.25-1/2013-14(BSR)/7-167/2007 (BSR)) for financial support. Author AVS is thankful to the Department of Science and Technology (DST) New Delhi, India for awarding ‘Scholarship for Higher Education (SHE)(2205/2012)’ through ‘INSPIRE’ scheme. This work is supported by University Grants Commission (UGC), New Delhi, through the project no. 43-517/2014(SR) and partially supported by the Human Resources Development program (no.: 20124010203180) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Trade, Industry, and Energy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. H. Kim or P. S. Patil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, T.S., Shinde, A.V., Devan, R.S. et al. Structural and electrochemical analysis of chemically synthesized microcubic architectured lead selenide thin films. Appl. Phys. A 124, 34 (2018). https://doi.org/10.1007/s00339-017-1441-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1441-0

Navigation