Skip to main content
Log in

Synthesis, Characterization, and Biological Activities of Ag-Au Nanoparticles Using Heliotropium eichwaldi L. Extract as a Reducing and Stabilizing Agent

  • Research
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Green nanotechnology has gained significant attention recently in a variety of industries. Its focus is on producing nanoparticles (NPs) of a small size. It is also less harmful to human health and the environment. In Pakistan, Heliotropium eichwaldi (HE), a herbaceous plant, is extensively found. Many therapeutic qualities have been reported for the genus Heliotropium. The herb has been traditionally used to treat ulcers, headaches, and earaches. The purpose of this work is to create a simple and reliable process for the synthesis of Ag/Au bimetallic NPs (Ag-Au NPs) using HE extracts. After that, the effects of Ag-Au NPs will be examined, including their ability to scavenge free radicals and inhibit the two enzymes, acetylcholinesterase (AChE) and alpha-amylase (α-amylase). The Ag-Au NPs were characterized using FT-IR, XRD, EDX, SEM, and UV–visible spectroscopy. The Ag, Au, and Ag-Au bimetallic NPs underwent XRD analysis, which showed a face-centered cubic crystal structure with an average size of 6 nm. Ag-Au NPs exhibit rod-shaped morphologies, according to SEM. Of the Ag-Au NPs, the elemental Ag signal was 4.20% and the elemental Au signal was 26.65%. The Ag-Au NPs showed remarkable inhibitory activity against AChE, α-amylase, and free radicals. According to our research, Ag-Au NPs can be successfully generated and go on to become important antioxidant, antidiabetic, and anti-Alzheimer agent compounds. Nonetheless, more research is advised to reduce any possible hazards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Data will be available as per the requirement of journal guidelines.

References

  1. Ahmad, B., Hafeez, N., Bashir, S., Rauf, A., & Mujeeb Ur, R. (2017). Phytofabricated gold nanoparticles and their biomedical applications. Biomedicine & Pharmacotherapy, 89, 414–425.

    Article  Google Scholar 

  2. Lee, E. S., de Josselin de Jong, E., & Kim, B. I. (2019). Detection of dental plaque and its potential pathogenicity using quantitative light-induced fluorescence. Journal of Biophotonics, 12, e201800414.

    Article  Google Scholar 

  3. Bocate, K. P., Reis, G. F., de Souza, P. C., Oliveira Junior, A. G., Durán, N., Nakazato, G., Furlaneto, M. C., de Almeida, R. S., & Panagio, L. A. (2019). Antifungal activity of silver nanoparticles and simvastatin against toxigenic species of Aspergillus. International Journal of Food Microbiology, 291, 79–86.

    Article  Google Scholar 

  4. Ajayi, E., & Afolayan, A. (2017). Green synthesis, characterization and biological activities of silver nanoparticles from alkalinized Cymbopogon citratus Stapf. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8, 015017.

    Google Scholar 

  5. Bagheri, A. R., Aramesh, N., Hasnain, M. S., Nayak, A. K., & Varma, R. S. (2023). Greener fabrication of metal nanoparticles using plant materials: A review. Chemical Physics Impact, 7, 100255.

    Article  Google Scholar 

  6. Rajeshkumar, S. (2016). Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. Journal, Genetic Engineering & Biotechnology, 14, 195–202.

    Article  Google Scholar 

  7. Hulla, J. E., Sahu, S. C., & Hayes, A. W. (2015). Nanotechnology: History and future. Human and Experimental Toxicology, 34, 1318–1321.

    Article  Google Scholar 

  8. Elemike, E. E., Onwudiwe, D. C., Nundkumar, N., Singh, M., & Iyekowa, O. (2019). Green synthesis of Ag, Au and Ag-Au bimetallic nanoparticles using Stigmaphyllon ovatum leaf extract and their in vitro anticancer potential. Materials Letters, 243, 148–152.

    Article  Google Scholar 

  9. Akinsiku, A. A., Dare, E. O., Ajanaku, K. O., Ajani, O. O., Olugbuyiro, J. A. O., Siyanbola, T. O., Ejilude, O., & Emetere, M. E. (2018). Modeling and synthesis of Ag and Ag/Ni allied bimetallic nanoparticles by green method: Optical and biological properties. International Journal of Biomaterials, 2018, 17.

    Article  Google Scholar 

  10. Al-Haddad, J., Alzaabi, F., Pal, P., Rambabu, K., & Banat, F. (2019). Green synthesis of bimetallic copper–silver nanoparticles and their application in catalytic and antibacterial activities. Clean Technologies and Environmental Policy, 22, 269–277.

    Article  Google Scholar 

  11. Sher, N., Ahmed, M., Mushtaq, N., & Khan, R. A. (2020). Calligonum polygonoides reduced nanosilver: A new generation of nanoproduct for medical applications. European Journal of Integrative Medicine, 33, 101042.

    Article  Google Scholar 

  12. Batiha, G. E., Alkazmi, L. M., Wasef, L. G., Beshbishy, A. M., Nadwa, E. H., Rashwan, E. K. (2020) Syzygium aromaticum L. (Myrtaceae): Traditional uses, bioactive chemical constituents, pharmacological and toxicological activities. Biomolecules, 10, 2–16.

  13. Ijaz, S., Perveen, A., Ghaffar, N. (2019) Preliminary phytochemical screening of seeds of Phytolacca latbenia (Moq.) walte. A wild medicinal plant of tropical and sub-tropical region of Pakistan. Organic & Medicinal Chemistry International Journal, 9, 18–21.

  14. Sher, N., Ahmed, M., Mushtaq, N., Khan, R. (2023) Cytotoxicity and genotoxicity of green synthesized silver, gold, and silver/gold bimetallic on BHK‐21 cells and human blood lymphocytes using MTT and comet assay. Applied Organometallic Chemistry, 37, e968.

  15. Sher, N., Alkhalifah, D. H. M., Ahmed, M., Mushtaq, N., Shah, F., Fozia, F., Khan, R. A., Hozzein, W. N., & Aboul-Soud, M. A. (2022). Comparative study of antimicrobial activity of silver, gold, and silver/gold bimetallic nanoparticles synthesized by green approach. Molecules, 27, 7895.

    Article  Google Scholar 

  16. Sher, N., Ahmed, M., Mushtaq, N., & Khan, R. A. (2022). Enhancing antioxidant, antidiabetic, and antialzheimer performance of Hippeastrum hybridum (L.) using silver nanoparticles. Applied Organometallic Chemistry, 36, e6724.

    Article  Google Scholar 

  17. Sher, N., Ahmed, M., Mushtaq, N., Khan, R. A. (2022) Synthesis of biogenic silver nanoparticles from the extract of Heliotropium eichwaldi L. and their effect as antioxidant, antidiabetic, and anti‐cholinesterase. Applied Organometallic Chemistry, 37, e6950.

  18. Sher, N., Ahmed, M., & Mushtaq, N. (2023). Synthesis, optimization, and characterization of silver/gold allied bimetallic from Hippeastrum hybridum (L.) and their ex vivo anti-acetylcholinesterase activity in rat brain. Applied Organometallic Chemistry, 37, e7082.

    Article  Google Scholar 

  19. Sher, N., Ahmed, M., Mushtaq, N., & Khan, R. A. (2023). Antioxidant, antidiabetic, and anti-Alzheimer performance of green synthesized silver, gold, and silver/gold bimetallic nanoparticles. Applied Organometallic Chemistry, 37, e7208.

    Article  Google Scholar 

  20. Shah, A., Ahmed, A., Sher, N., Mushtaq, M., Khan, R. A., & Fozia, M. (2021). Efficacy of Silene arenosa extract on acetylcholinesterase in Bungarus sindanus(krait) venom. Journal of Traditional Chinese Medicine, 41, 349–354.

    Google Scholar 

  21. Sher, N., Ahmed, A., Mushtaq, N., Khan, R. A. (2023) Ex vivo antiacetylcholinesterase studies on silver nanoparticles synthesized using green approach. Applied Organometallic Chemistry, 37, 7273.

  22. Sher, N., Ahmed, M., & Mushtaq, N. (2022). Biogenic synthesis of gold nanoparticles using Heliotropium eichwaldi L and neuroprotective potential via anticholinesterase inhibition in rat brain. Applied Organometallic Chemistry, 37, e7000.

    Article  Google Scholar 

  23. Prasad, K. S., & Savithramma, N. (2015). Biosynthesis and validation of silver nanoparticles from Nymphaea caerulea American Journal of Advanced. Drug Delivery, 3, 149–159.

    Google Scholar 

  24. Siddiqui, S., Verma, A., Rather, A. A., et al. (2009). Preliminary phytochemicals analysis of some important medicinal and aromatic plants. Advances in Biological Research, 3, 188–195.

    Google Scholar 

  25. Gopinath, K., Kumaraguru, S., Bhakyaraj, K., Mohan, S., Venkatesh, K. S., Esakkirajan, M., Kaleeswarran, P., Alharbi, N. S., Kadaikunnan, S., Govindarajan, M., Benelli, G., & Arumugam, A. (2016). Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microbial Pathogenesis, 101, 1–11.

    Article  Google Scholar 

  26. Oyaizu, M. (1986). Studies on products of browning reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. Japanese Journal of Nutrition, 44, 307–315.

    Google Scholar 

  27. Velavan, S., Arivoli, P., & Mahadevan, K. (2012). Biological reduction of silver nanoparticles using Cassia auriculata flower extract and evaluation of their in vitro antioxidant activities. Nanoscience and Nanotechnolog. An International Journal, 2, 30–35.

    Google Scholar 

  28. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Food Sci Technol-LWT, 28, 25–30.

    Article  Google Scholar 

  29. Pick, E., & Mizel, D. (1981). Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. Journal of Immunological Methods, 46, 211–226.

    Article  Google Scholar 

  30. Mathew, S., & Abraham, T. E. (2006). In vitro antioxidant activity and scavenging effects of Cinnamomum verum leaf extract assayed by different methodologies. Food and Chemical Toxicology, 44, 198–206.

    Article  Google Scholar 

  31. Kwon, Y., Apostolidis, E., Shetty, K. (2006) Inhibitory potential of wine and tea against α-amylase and α-glucosidase for management of hyperglycemia linked to type 2 diabetes. Journal of Food Biochemistry, 32, 15–31.

  32. Ali, H., Houghton, P. J., & Soumyanath, A. (2006). alpha-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. Journal of Ethnopharmacology, 107, 449–455.

    Article  Google Scholar 

  33. Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociation constants. Journal of American Chemical Society, 56, 658–666.

    Article  Google Scholar 

  34. Hofstee, B. H. (1952). On the evaluation of the constants Vm and KM in enzyme reactions. Science, 116, 329–331.

    Article  Google Scholar 

  35. Dowd, J. E., & Riggs, D. S. (1965). A comparison of estimates of Michaelis-Menten kinetic constants from various linear transformations. Journal of Biological Chemistry, 240, 863–869.

    Article  Google Scholar 

  36. Cornish-Bowden, A., & Cárdenas, M. L. (1991). Hexokinase and ‘glucokinase’ in liver metabolism. Trends in Biochemical Sciences, 16, 281–282.

    Article  Google Scholar 

  37. Dixon, M., & Webb, E. C. (1964). Enzymes. Longmans.

    Google Scholar 

  38. Ahmed, M., Batista, J., Rocha, T., Mazzanti, C. M., Hassan, W., & Morsch, V. M. (2008). Comparative study of the inhibitory effect of antidepressants on cholinesterase activity in Bungarus sindanus (krait) venom, human serum and rat striatum. Journal of Enzyme Inhibition and Medicinal Chemistry, 23, 912–917.

    Article  Google Scholar 

  39. Rocha, J. B., Emanuelli, T., & Pereira, M. E. (1993). Effects of early undernutrition on kinetic parameters of brain acetylcholinesterase from adult rats. Acta Neurobiol Exp (Wars), 53, 431–437.

    Google Scholar 

  40. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  Google Scholar 

  41. Steel, R. G. D., & Torrie, J. H. (1984). Principles and procedures of statistics : A biometrical approach. McGraw-Hill.

    Google Scholar 

  42. Sher, N., Ahmed, M., Mushtaq, N., & Khan, R. A. (2023). Acetylcholinesterase activity in the brain of rats: Presence of an inhibitor of enzymatic activity in Heliotropium eichwaldi L. induced silver/gold allied bimetallic nanoparticles. Nano Biomedicine and Engineering, 15, 317–329.

    Article  Google Scholar 

  43. Sher, N., Ahmed, M., Mushtaq, N., Khan, R. A. (2023) Acetylcholinesterase activity in the brain of rats: Presence of an inhibitor of enzymatic activity in Heliotropium eichwaldi L. induced silver/gold allied bimetallic nanoparticles. Nano Biomedicine and Engineering, 15, 23–34.

  44. Ibrahim, H. M. M. (2015). Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. Journal of Radiation Research and Applied Sciences, 8, 265–275.

    Article  Google Scholar 

  45. Sathiyaraj, S., Suriyakala, G., Gandhi, A. D., Saranya, S., Santhoshkumar, M., Kavitha, P., & Babujanarthanam, R. (2020). Green biosynthesis of silver nanoparticles using Vallarai chooranam and their potential biomedical applications. Journal of Inorganic and Organometallic Polymers and Materials, 30, 4709–4719.

    Article  Google Scholar 

  46. Park, Y., Hong, Y. N., Weyers, A., Kim, Y. S., & Linhardt, R. J. (2011). Polysaccharides and phytochemicals: A natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnology, 5, 69–78.

    Article  Google Scholar 

  47. Ahmed, H. B., Mikhail, M. M., El-Sherbiny, S., Nagy, K. S., & Emam, H. E. (2020). pH responsive intelligent nano-engineer of nanostructures applicable for discoloration of reactive dyes. Journal of Colloid and Interface Science, 561, 147–161.

    Article  Google Scholar 

  48. Ahmed, M., Ahmad, A., Mushtaq, N., Sher, N., Khan, R. (2022) Protective role of antibiotics (anisomycin and puromycin) against snake venom acetylcholinesterase (AChE). International Journal of Peptide Research and Therapeutics, 29, 13.

  49. Abida, A., Almutairi, M. H., Mushtaq, N., Ahmed, M., Sher, N., Fozia, F., Ahmad, I., Almutairi, B. O., & Ullah, Z. (2023). Revolutionizing nanotechnology with Filago desertorum extracts: Biogenic synthesis of silver nanoparticles exhibiting potent antioxidant and antibacterial activities. ACS Omega, 8, 35140–35151.

    Article  Google Scholar 

  50. Ruddaraju, L. K., Pallela, P. N. V. K., Pammi, S. V. N., Padavala, V. S., & Kolapalli, V. R. M. (2019). Synergetic antibacterial and anticarcinogenic effects of Annona squamosa leaf extract mediated silver nano particles. Materials Science in Semiconductor Processing, 100, 301–309.

    Article  Google Scholar 

  51. Vo, T. T., Dang, C. H., Doan, V. D., Dang, V. S., & Nguyen, T. D. (2020). Biogenic synthesis of silver and gold nanoparticles from lactuca indica leaf extract and their application in catalytic degradation of toxic compounds. Journal of Inorganic and Organometallic Polymers and Materials, 30, 388–399.

    Article  Google Scholar 

  52. Kalimuthu, K., Babu, R. S., Venkataraman, D., Bilal, M., & Gurunathan, S. (2008). Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloid Surface B, 65, 150–153.

    Article  Google Scholar 

  53. Dada, A. O., Adekola, F. A., & Odebunmi, E. O. (2017). A novel zerovalent manganese for removal of copper ions: Synthesis, characterization and adsorption studies. Applied Water Science, 7, 1409–1427.

    Article  Google Scholar 

  54. Dada, A. O., Adekola, F. A., & Odebunmi, E. O. (2016). Kinetics and equilibrium models for sorption of Cu(II) onto a novel manganese nano-adsorbent. Journal of Dispersion Science and Technology, 37, 119–133.

    Article  Google Scholar 

  55. Dada, A. O., Inyinbor, A. A., Idu, E. I., Bello, O. M., Oluyori, A. P., Adelani-Akande, T. A., Okunola, A. A., & Dada, O. (2018). Effect of operational parameters, characterization and antibacterial studies of green synthesis of silver nanoparticles using Tithonia diversifolia. PeerJ, 6, e5865.

    Article  Google Scholar 

  56. Femi-Adepoju, A. G., Dada, A. O., Otun, K. O., Adepoju, A. O., & Fatoba, O. P. (2019). Green synthesis of silver nanoparticles using terrestrial fern (Gleichenia Pectinata (Willd.) C. Presl.): Characterization and antimicrobial studies. Heliyon, 5, e01543.

    Article  Google Scholar 

  57. Kalimuthu, K., Suresh Babu, R., Venkataraman, D., Bilal, M., & Gurunathan, S. (2008). Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids and Surfaces. B, Biointerfaces, 65, 150–153.

    Article  Google Scholar 

  58. Parveen, M., Ahmad, F., Malla, A. M., & Azaz, S. (2016). Microwave-assisted green synthesis of silver nanoparticles from Fraxinus excelsior leaf extract and its antioxidant assay. Applied nanoscience, 6, 267–276.

    Article  Google Scholar 

  59. Sher, N., Ahmed, M., Mushtaq, N., & Khan, R. A. (2022). Enhancing antioxidant, antidiabetic, and antialzheimer performance of Hippeastrum hybridum (L.) using silver nanoparticles. Applied Organometallic chemistry, 36, 6724.

    Article  Google Scholar 

  60. Adebayo, E. A., Ibikunle, J. B., Oke, A. M., Lateef, A., Azeez, M. A., Oluwatoyin, A. O., AyanfeOluwa, A. V., Blessing, O. T., Comfort, O. O., & Adekunle, O. O. (2019). Antimicrobial and antioxidant activity of silver, gold and silver-gold alloy nanoparticles phytosynthesized using extract of Opuntia ficus-indica. J Rev Adv Mater Sci, 58, 313–326.

    Google Scholar 

  61. Guntur, S. R., Kumar, N. S., Hegde, M. M., & Dirisala, V. R. (2018). In vitro studies of the antimicrobial and free-radical scavenging potentials of silver nanoparticles biosynthesized from the extract of Desmostachya bipinnata. Analytical Chemistry Insights, 13, 1177390118782877.

    Article  Google Scholar 

  62. Gahlawat, G., Shikha, S., Chaddha, B. S., Chaudhuri, S. R., Mayilraj, S., & Choudhury, A. R. (2016). Microbial glycolipoprotein-capped silver nanoparticles as emerging antibacterial agents against cholera. Microbial Cell Factories, 15, 25.

    Article  Google Scholar 

  63. Carlson, C., Hussain, S. M., Schrand, A. M., Braydich-Stolle, L. K., Hess, K. L., Jones, R. L., & Schlager, J. J. (2008). Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species. The Journal of Physical Chemistry B, 112, 13608–13619.

    Article  Google Scholar 

  64. Huang, J., Huang, N., Mao, Q., Shi, J., & Qiu, Y. (2023). Natural bioactive compounds in Alzheimer’s disease: From the perspective of type 3 diabetes mellitus. Frontiers in Aging Neuroscience, 15, 1130253.

    Article  Google Scholar 

  65. Malapermal, V., Botha, I., Krishna, S. B. N., & Mbatha, J. N. (2017). Enhancing antidiabetic and antimicrobial performance of Ocimum basilicum, and Ocimum sanctum (L.) using silver nanoparticles. Saudi Journal of Biological Sciences, 24, 1294–1305.

    Article  Google Scholar 

  66. Ahmed, M., Khan, S. Z., Sher, N., Rehman, Z. U., Mushtaq, N., & Khan, R. A. (2021). Kinetic and toxicological effects of synthesized palladium(II) complex on snake venom (Bungarus sindanus) acetylcholinesterase. J Venom Anim Toxins Incl Trop Dis, 27, e20200047.

    Google Scholar 

  67. Ahmed, M., Mushtaq, N., Sher, N., & Morel, A. F. (2022). New synthesized tri-peptide as inhibitor of krait (Bungarus sindanus) venom acetylcholinesterase. International Journal of Peptide Research and Therapeutics, 28, 1–8.

    Article  Google Scholar 

  68. Karthick, V., Kumar, V. G., Dhas, T. S., Singaravelu, G., Sadiq, A. M., & Govindaraju, K. (2014). Effect of biologically synthesized gold nanoparticles on alloxan-induced diabetic rats-an in vivo approach. Colloids and Surfaces. B, Biointerfaces, 122, 505–511.

    Article  Google Scholar 

  69. Mecocci, P., & Polidori, M. C. (2012). Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease. Biochimica et Biophysica Acta, 1822, 631–638.

    Article  Google Scholar 

  70. Kumar, D. N., Alex, S. A., Kumar, R. S. S., Chandrasekaran, N., & Mukherjee, A. (2015). Acetylcholinesterase inhibition-based ultrasensitive fluorometric detection of malathion using unmodified silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 485, 111–117.

    Article  Google Scholar 

  71. Rajakumar, G., Gomathi, T., Thiruvengadam, M., Devi Rajeswari, V., Kalpana, V. N., & Chung, I. M. (2017). Evaluation of anti-cholinesterase, antibacterial and cytotoxic activities of green synthesized silver nanoparticles using from Millettia pinnata flower extract. Microbial Pathogenesis, 103, 123–128.

    Article  Google Scholar 

  72. Abdelwahab, G. M., Mira, A., Cheng, Y. B., Abdelaziz, T. A., Lahloub, M. F. I., & Khalil, A. T. (2021). Acetylcholine esterase inhibitory activity of green synthesized nanosilver by naphthopyrones isolated from marine-derived Aspergillus niger. PLoS ONE, 16, e0257071.

    Article  Google Scholar 

Download references

Funding

The present study was supported by the higher education commission of Pakistan via project n. 20–2171/NRPU/R&D/HEC/13/5610.

Author information

Authors and Affiliations

Authors

Contributions

NS, MA, NM, and OK performed experiments, analyzed data, wrote the paper, and did data curation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mushtaq Ahmed.

Ethics declarations

Ethics Approval and Consent to Participate

The study was approved by the Departmental Ethical Approval Committee (ref. n. Biotech/Ethic/117).

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sher, N., Ahmed, M., Mushtaq, N. et al. Synthesis, Characterization, and Biological Activities of Ag-Au Nanoparticles Using Heliotropium eichwaldi L. Extract as a Reducing and Stabilizing Agent. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01450-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01450-9

Keywords

Navigation