Skip to main content
Log in

Gyrotactic Mixed Bioconvective Flow of Copper–Water Nanofluid Past a Rotating Cone with Non-uniform Heat Source and Activation Energy

  • Research
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The present study is concerned with the bioconvective magneto-nanofluid flow of copper–water containing gyrotactic motile microorganisms across a vertically spinning cone in a porous regime. Bioconvection in nanofluid is important in bioscience, such as for delivering drugs, content detection, micro-enzymes, biological sensors, and nanotechnology, among other applications. The aim of the current study is to observe flow characteristics following the addition of Cu nanoparticles including the contribution of variable heat source, Joule heating, and Arrhenius energy activation. The research methodology used to construct the article is as follows: The first section is “Introduction,” which contains some literature review. The governing equations for the proposed study were developed in the “Mathematical Formulation” section. The leading partial differential equations (PDEs) are converted to nonlinear ordinary differential equations (ODEs) by applying the proper similarity variables. These equations are then solved by the MATLAB bvp4c tool. The third section contains results and discussion. This section examines the behavior of numerous physical factors for density motile microorganisms (DMM), velocity, concentration, temperature, density number of microorganisms, tangential and azimuthal skin frictions, mass transport rate, and heat transport rate are studied graphically. Results show that activation energy enhances the thickness of the temperature and concentration boundary layer while it reduces the mass transport rate. Eckert number raises tangential velocity while reducing the normal velocity. The volume fraction parameter raises the thermal boundary layer. Moreover, the rate of heat transport reduces for thermophoresis number and buoyancy ratio parameter. The fourth section is “Comparison and Validation,” which contains a comparison of current work, which is intended to constitute a good agreement. The fifth section, “Conclusion,” contains some major conclusions of this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Data Availability

No new data was generated.

Abbreviations

\({E}_{A}\)  :

Activation energy/J

\({R}_{b}\) :

Bioconvective Rayleigh number

\({S}_{b}\) :

Bioconvective Schmidt number

\({K}^{*}\) :

Boltzmann constant

\({D}_{M}\) :

Brownian diffusion coefficient

\({N}_{b}\) :

Brownian motion

\({N}_{r}\) :

Buoyancy ratio parameter

\(x,y,z\) :

Cartesian co-ordinates

\({k}_{0}^{2}\) :

Chemical reaction parameter

\(b\) :

Chemotactic constant

\({{\text{g}}}_{1}\) :

Circumferential velocity/m s−1

\({A}_{0},{B}_{0}\) :

Heat source/sink parameter’s coefficients/J

\(C\) :

Concentration/mol m−3

\(Da\) :

Darcy parameter

\(Ec\) :

Eckert number

\({n}_{1}\) :

Fitted rate constant

\(u,v,w\) :

Fluid velocity along x, y, and z-axes/m s−1

\({Gr}_{L}\) :

Grashof number

\({\text{g}}\) :

Gravitational acceleration/m s−2

\(Ha\) :

Hartmann number

\({q}^{{\prime}{\prime}{\prime}}\) :

Heat source/sink

\(v\) :

Kinematic viscosity/m2 s−1

\({B}_{0}\) :

Magnetic field strength/T

\({M}_{1}\) :

Magnetic parameter

\({W}_{c}\) :

Maximum cell swimming speed

\({D}_{n}\) :

Microorganism’s diffusivity

\({D}_{T}\) :

Microorganism’s thermophoretic diffusion coefficient

\(M\) :

Motile microorganism’s density/kg m−3

\(E\) :

Energy activation parameter

\(h\) :

Normal velocity of flow/m s−1

\(Pe\) :

Peclet number

\(K\) :

Permeability of porous regime

\(Pr\) :

Prandtl number

\(R\) :

Radiation parameter

\({q}_{r}\) :

Radiative heat flux

\({Re}_{L}\) :

Reynolds number

\({C}_{p}\) :

Specific heat

\(Sr\) :

Soret number

\(Sc\) :

Schmidt number

\(f\) :

Tangential velocity/m s−1

\(T\) :

Temperature/K

\({K}_{T}\) :

Thermal diffusion ratio

\({N}_{t}\) :

Thermophoresis number

\(\Omega\) :

Angular velocity/rad s1

\(\gamma\) :

Chemical reaction

\(\beta\) :

Thermal expansion coefficient

\(\rho\) :

Density/kg m3

\(\phi\) :

Dimension-free concentration

\(\xi\) :

Dimension-free density of motile microorganism (DMM)

\(\theta\) :

Dimension-free temperature

\(\mu\) :

Dynamic viscosity/Pa s

\(\sigma\) :

Electric conductivity/S m1

\({\gamma }^{*}\) :

Microorganism’s average volume

\({\rho }_{m}\) :

Microorganism’s density/kg m3

\(\Lambda\) :

Mixed convection parameter

\({\sigma }_{1}\) :

Motile parameter

\({\delta }_{1}\) :

Non-dimensional constant temperature

\({\rho }_{p}\) :

Particle’s density/kg m3

\(\varepsilon\) :

Porosity parameter

\(\tau\) :

Quotient of heat capacity of nanoparticles and fluid

\(\eta\) :

Similarity variable

\(\kappa\) :

Thermal conductivity/W m1 K1

\({\phi }_{1}\) :

Volume fraction

\(bf\) :

Base fluid

\(w\) :

Condition at wall

\(\infty\) :

Free stream condition

\(nf\) :

Nanofluid

References

  1. Kuznetsov, A. V., & Avramenko, A. A. (2000). Effect of small particles on the stability of bioconvection in a suspension of gyrotactic microorganisms in a layer of finite depth. International Communications in Heat and Mass Transfer. https://doi.org/10.1016/S0735-1933(03)00196-9

    Article  Google Scholar 

  2. Raju, C. S. K., & Sandeep, N. (2016). Heat and mass transfer in MHD non-Newtonian bio-convection flow over a rotating cone/plate with cross diffusion. Journal of Molecular Liquids. https://doi.org/10.1016/j.molliq.2015.12.058

    Article  Google Scholar 

  3. Siddiqa, S., Gul-e-Hina, B. N., Saleem, S., Hossain, M. A., & Gorla, R. S. R. (2016). Numerical solutions of nanofluid bioconvection due to gyrotactic microorganisms along a vertical wavy cone. International Journal of Heat and Mass Transfer. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.076

    Article  Google Scholar 

  4. Balla, C. S., & Naikoti, K. (2018). Numerical solution of MHD bioconvection in a porous square cavity due to oxytactic microorganisms. Applications and Applied Mathematics: An International Journal. https://digitalcommons.pvamu.edu/aam/vol14/iss4/6

  5. Saleem, S., Rafiq, H., Al-Qahtani, A., El-Aziz, M. A., Malik, M. Y., & Animasaun, I. L. (2019). Magneto Jeffery nanofluid bioconvection over a rotating vertical cone due to gyrotactic microorganism. Mathematical Problems in Engineering. https://doi.org/10.1155/2019/3478037

    Article  Google Scholar 

  6. Rao, M. V. S., Gangadhar, K., Chamkha, A. J., & Surekha, P. (2021). Bioconvection in a conventional nanofluid flow containing gyrotactic microorganisms over an isothermal vertical cone embedded in a porous surface with chemical reactive species. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-020-05132-y

    Article  Google Scholar 

  7. Alharbi, F. M., Naeem, M., Zubair, M., Jawad, M., Jan, W. U., & Jan, R. (2021). Bioconvection due to gyrotactic microorganisms in couple stress hybrid nanofluid laminar mixed convection incompressible flow with magnetic nanoparticles and chemical reaction as carrier for targeted drug delivery through porous stretching sheet. Molecules. https://doi.org/10.3390/molecules26133954

    Article  Google Scholar 

  8. Abdal, S., Mariam, A., Ali, B., Younas, S., Ali, L., & Habib, D. (2021). Implications of bioconvection and activation energy on Reiner-Rivlin nanofluid transportation over a disk in rotation with partial slip. Chinese Journal of Physics. https://doi.org/10.1016/j.cjph.2021.07.022

    Article  MathSciNet  Google Scholar 

  9. Abdal, S., Siddique, I., Eldin, S. M., Bilal, M., & Hussain, S. (2022). Significance of thermal radiation and bioconvection for Williamson nanofluid transportation owing to cone rotation. Science and Reports. https://doi.org/10.1038/s41598-022-27118-6

    Article  Google Scholar 

  10. Azam, M., Mabood, F., & Khan, M. (2022). Bioconvection and activation energy dynamisms on radiative sutterby melting nanomaterial with gyrotactic microorganism. Case Studies in Thermal Engineering. https://doi.org/10.1016/j.csite.2021.101749

    Article  Google Scholar 

  11. Tayyab, M., Siddique, I., Jarad, F., Ashraf, M. K., & Ali, B. (2022). Numerical solution of 3D rotating nanofluid flow subject to Darcy-Forchheimer law, bio-convection and activation energy. South African Journal of Chemical Engineering. https://doi.org/10.1016/j.sajce.2022.01.005

    Article  Google Scholar 

  12. Basha, H. T., Sivaraj, R., Animasaun, I. L., & Makinde, O. D. (2018). Influence of non-uniform heat source/sink on unsteady chemically reacting nanofluid flow over a cone and plate. Defect and Diffusion Forum. https://doi.org/10.4028/www.scientific.net/DDF.389.50

    Article  Google Scholar 

  13. Reddy, M. G., Rani, M. V. V. N. L. S., Kumar, K. G., & Prasannakumara, B. C. (2018). Cattaneo-Christov heat flux and non-uniform heat-source/sink impacts on radiative Oldroyd-B two-phase flow across a cone/wedge. Journal of the Brazilian Society of Mechanical Sciences and Engineering. https://doi.org/10.1007/s40430-018-1033-8

    Article  Google Scholar 

  14. Ragupathi, P., Hakeem, A. K. A., Al-Mdallal, Q. M., & Ganga, B. (2019). Non-uniform heat source/sink effects on the three-dimensional flow of Fe3O4/Al2O3 nanoparticles with different base fluids past a Riga plate. Case Studies in Thermal Engineering. https://doi.org/10.1016/j.csite.2019.100521

    Article  Google Scholar 

  15. Thumma, T., & Mishra, S. R. (2020). Effects of nonuniform heat source/sink, and viscous and Joule dissipation on 3D Eyring-Powell nanofluid flow over a stretching sheet. Journal of Computational Design and Engineering. https://doi.org/10.1093/jcde/qwaa034

    Article  Google Scholar 

  16. Li, Y., Rahman, M. I. U., Huang, W., Khan, M. I., Khan, S. U., Chinram, R., & Kadry, S. (2021). Dynamics of Casson nanoparticles with non-uniform heat source/sink: A numerical analysis. Ain Shams Engineering Journal. https://doi.org/10.1016/j.asej.2021.05.010

    Article  Google Scholar 

  17. Srinivasulu, T., & Bandari, S. (2020). MHD, Nonlinear thermal radiation and non-uniform heat source/sink effect on Williamson nanofluid over an inclined stretching sheet. Malaya Journal of Matematik. https://doi.org/10.26637/MJM0803/0106

  18. Ali, L., Liu, X., Ali, B., Abdal, S., & Zulqarnain, R. M. (2021). Finite element analysis of unsteady MHD Blasius and Sakiadis flow with radiation and thermal convection using Cattaneo-Christov heat flux model. Physica Scripta. https://iopscience.iop.org/article/10.1088/1402-4896/ac25a3/meta

  19. Ali, B., Raju, C. S., Ali, L., Hussain, S., & Kamran, T. (2021). G-Jitter impact on magnetohydrodynamic non-Newtonian fluid over an inclined surface: Finite element simulation. Chinese Journal of Physics. https://doi.org/10.1016/j.cjph.2021.03.020

    Article  MathSciNet  Google Scholar 

  20. Manvi, B., Tawade, J., Biradar, M., Noeiaghdam, S., Fernandez-Gamiz, U., & Govindan, V. (2022). The effects of MHD radiating and non-uniform heat source/sink with heating on the momentum and heat transfer of Eyring-Powell fluid over a stretching. Results in Engineering. https://doi.org/10.1016/j.rineng.2022.100435

    Article  Google Scholar 

  21. Choi, S. U. S., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles. ASME International Mechanical Engineering Congress & Exposition, 66, 99–105.

    Google Scholar 

  22. Ali, B., Naqvi, R. A., Hussain, D., Aldossary, O. M., & Hussain, S. (2020). Magnetic rotating flow of a hybrid nano-materials Ag-MoS2 and Go-MoS2 in C2H6O2-H2O hybrid base fluid over an extending surface involving activation energy: FE simulation. Mathematics. https://www.mdpi.com/2227-7390/8/10/1730

  23. Jeevandhar, S. P., Kedla, V., Gullapalli, N., & Thavada, S. K. (2021). Natural convective effects on MHD boundary layer nanofluid flow over an exponentially accelerating vertical plate. Biointerface Research in Applied Chemistry. https://doi.org/10.33263/briac116.1379013805

  24. Sadiq, K., Jarad, F., Siddique, I., & Ali, B. (2021). Soret and radiation effects on mixture of ethylene glycol-water (50%-50%) based Maxwell nanofluid flow in an upright channel. Complexity. https://www.hindawi.com/journals/complexity/2021/5927070/

  25. Mahabaleshwar, U. S., Sneha, K. N., & Huang, H. (2021). An effect of MHD and radiation on CNTS-Water based nanofluid due to stretching sheet in a Newtonian fluid. Case Studies in Thermal Engineering. https://doi.org/10.1016/j.csite.2021.101462

    Article  Google Scholar 

  26. Hussain, S., Rasheed, K., Ali, A., Vrinceanu, N., Alshehri, A., & Shah, Z. (2022). A sensitivity analysis of MHD nanofluid flow across an exponentially stretched surface with non-uniform heat flux by response surface methodology. Science and Reports. https://doi.org/10.1038/s41598-022-22970-y

    Article  Google Scholar 

  27. Lone, S. A., Alyami, M. A., Saeed, A., Dawar, A., Kumam, P., & Kumam, W. (2022). MHD micropolar hybrid nanofluid flow over a flat surface subject to mixed convection and thermal radiation. Science and Reports. https://doi.org/10.1038/s41598-022-21255-8

    Article  Google Scholar 

  28. Awan, A. U., Ahammad, N. A., Majeed, S., Gamaoun, F., & Ali, B. (2022). Significance of hybrid nanoparticles, Lorentz and Coriolis forces on the dynamics of water based flow. International Communications in Heat and Mass Transfer. https://doi.org/10.1016/j.icheatmasstransfer.2022.106084

  29. Eswaramoorthi, S., Divya, S., Faisal, M., & Namgyel, N. (2022). Entropy and Heat transfer analysis for MHD flow of Cu/Ag-Water-Based nanofluids on heated 3D plate with nonlinear radiation. Mathematical Modelling of Momentum and Energy Transport at Fluid-Fluid Interfaces. https://doi.org/10.1155/2022/7319988

    Article  Google Scholar 

  30. Saeed, A., & Gul, T. (2021). Bioconvection Casson nanofluid flow together with Darcy-Forchheimer due to a rotating disk with thermal radiation and Arrehenius activation energy. SN Applied Sciences. https://doi.org/10.1007/s42452-020-04007-z

    Article  Google Scholar 

  31. Zainal, N. A., Nazar, R., Naganthran, K., & Pop, I. (2022). Mixed bioconvection stagnation point flow towards a vertical plate in alumina-copper/water. International Journal of Numerical Methods for Heat & Fluid Flow. https://doi.org/10.1108/HFF-10-2021-0693

    Article  Google Scholar 

  32. Hering, R. G., & Grosh, R. J. (1963). Laminar combined convection from a rotating cone. Journal of Heat Transfer. https://doi.org/10.1115/1.3686006

  33. Mallikarjuna, B., Rashad, A. M., Chamkha, A. J., & Raju, S. H. (2016). Chemical reaction effects on MHD convective heat and mass transfer flow past a rotating vertical cone embedded in a variable porosity regime. Afrika Matematika. https://doi.org/10.1007/s13370-015-0372-1

    Article  MathSciNet  Google Scholar 

  34. Sulochana, C., Samrat, S. P., & Sandeep, N. (2018). Numerical investigation of magnetohydrodynamic (MHD) radiative flow over a rotating cone in the presence of Soret and chemical reaction. Propulsion and Power Research. https://doi.org/10.1016/j.jppr.2018.01.001

    Article  Google Scholar 

  35. Shah, S. A. A., Ahammad, N. A., Din, E. M. T. E., Gamaoun, F., Awan, A. U., & Ali, B. (2022). Bio-convection effects on Prandtl hybrid nanofluid flow with chemical reaction and motile microorganism over a stretching sheet. Nanomaterials. https://doi.org/10.3390/nano12132174

    Article  Google Scholar 

  36. Waqas, H., Kafait, A., Muhammad, T., & Farooq, U. (2022). Numerical study for bio-convection flow of tangent hyperbolic nanofluid over a Riga plate with activation energy. Alexandria Engineering Journal. https://doi.org/10.1016/j.aej.2021.06.068

    Article  Google Scholar 

  37. Akbar, Y., Alotaibi, H., Iqbal, J., Nisar, K. S., & Alharbi, K. A. M. (2022). Thermodynamic analysis for bioconvection peristaltic transport of nanofluid with gyrotactic motile microorganisms and Arrhenius activation energy. Case Studies in Thermal Engineering. https://doi.org/10.1016/j.csite.2022.102055

    Article  Google Scholar 

  38. Kumar, P. B. S., Gireesha, B. J., Mahanthesh, B., & Chamkha, A. J. (2018). Thermal analysis of nanofluid flow containing gyrotactic microorganisms in bio-convection and second-order slip with convective condition. Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s10973-018-7860-0

    Article  Google Scholar 

  39. Gireesha, B. J., & Rudraswamy, N. G. (2014). Chemical reaction on MHD flow and heat transfer of a nanofluid near the stagnation point over a permeable stretching surface with non-uniform heat source/sink. International Journal of Engineering, Science and Technology. https://doi.org/10.4314/ijest.v6i5.2

    Article  Google Scholar 

  40. Alblawi, A., Malik, M. Y., Nadeem, S., & Abbas, N. (2019). Buongiorno’s nanofluid model over a curved exponentially stretching surface. Processes, 7(10), 665.

    Article  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

The flow model was designed by both authors, Utpal Jyoti Das and Indushri Patgiri. Indushri Patgiri solved the problem and drew the graphs. The “Results and Discussion” section was written by Utpal Jyoti Das. Finally, both authors, Utpal Jyoti Das and Indushri Patgiri, read and approved the final manuscript.

Corresponding author

Correspondence to Indushri Patgiri.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, U.J., Patgiri, I. Gyrotactic Mixed Bioconvective Flow of Copper–Water Nanofluid Past a Rotating Cone with Non-uniform Heat Source and Activation Energy. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01442-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01442-9

Keywords

Navigation