Skip to main content
Log in

Scrutinization of Unsteady Bio-convective Stagnation Slip Flow of Hybrid Nanofluid Past a Riga Wedge in the Presence of Activation Energy and Chemical Reaction

  • Research
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

This study examines the rheological effects of a hybrid nanofluid and the swimming behavior of gyrotactic microorganisms in an unsteady flow over an expandable Riga wedge. A stagnation point region, suspended with hybrid nanofluid and microorganisms, is considered, subject to velocity slip at the boundary. The study investigates the bio-convection fluid flow phenomenon and considers the effects of chemical reaction, heat source/sink, mass suction, and activation energy. A precise similarity transformation is used to convert the governing partial differential equations into ordinary differential equations. These are then numerically solved using the shooting technique in MATLAB, specifically with the BVP4C solver. The study scrutinizes the effects of various relevant parameters on the dimensionless profiles of velocity, temperature, concentration, and microorganisms. Furthermore, the surface drag force, heat transfer rate, Sherwood number, and motile microorganism density are calculated. To validate the accuracy of the adopted numerical scheme, a tabular comparison is made between the current results and those from the literature in a limiting case. It is observed that adding Al2O3 nanoparticles decreases the fluid velocity, while adding Cu nanoparticles increases it; however, in both cases, the fluid temperature decreases. Increasing the wedge angle parameter enhances the fluid temperature and motile density. The heat transfer coefficient decreases with increasing nanoparticle concentration and wedge angle parameter, whereas the opposite behavior is observed for the Biot number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Abbreviations

A :

Unsteadiness parameter

B :

Constant

Bi:

Biot number

C :

Concentration of the fluid (kg/m3)

C 0 :

Initial reference concentration (kg/m3)

C w :

Concentration at the surface (kg/m3)

c p :

Specific heat (J/kg K)

C :

Concentration far away from the disk (kg/m3)

d :

Width of the electrodes and magnets (m)

D B :

Brownian diffusion coefficient (m2/s)

D M :

Diffusivity of the microorganisms (m2/s)

D T :

Thermophoresis diffusion coefficient (m2/s)

E :

Dimensionless activation energy

\({E}_{a}\) :

The activation energy (kcal/mol)

\({\left(\frac{T}{{T}_{\infty }}\right)}^{n}exp\left(-\frac{{E}_{a}}{{K}_{B}T}\right)\)  :

The modified Arrhenius function

g :

Gravitational constant

h f :

Heat transfer coefficient

J 0 :

External flow rate in the electrodes

k :

Thermal conductivity(W/m K)

K r :

Chemical reaction rate

Lb:

Bio-convection Lewis number

M 0 :

Magnetic properties of the fixed magnet

M h :

Modified Hartmann number

N :

Microorganism density

N 0 :

Initial reference motile density

N w :

Microorganism density at the surface

Nb:

Brownian motion parameter

N r :

Buoyancy ratio factor

Nt:

Thermophoresis parameter

Nux :

Local Nusselt number

n :

Constant

Pe:

Peclet number

Pr:

Prandtl number

Q n :

Nonlinear thermal radiation

q m :

Surface mass flux

\({q}_{{w}_{1}}\) :

Surface heat transfer

\({q}_{{w}_{2}}\) :

Dispersion of motile microbes

R :

Radiation parameter

R b :

Rayleigh number

Rex :

Local Reynolds number

s :

Suction/injection parameter

Sc:

Schmidt number

Shx :

Local Sherwood number

T :

Temperature (K)

T 0 :

Initial reference temperature (K)

T R :

Temperature ratio parameter

T w :

Temperature at the surface (K)

u e :

Free stream velocity (m/s)

u,v :

Velocity components of the fluid along x- and y-axes, respectively (m/s)

\({u}_{w}\) :

Velocity of the Riga wedge (m/s)

v w :

Velocity of the fluid through the wall (m/s)

α * :

Angle of the wedge

α h :

Dimensionless constant

β :

Wedge angle parameter

χ :

Dimensionless motile density of the fluid

δ :

Constant dimension \({\left({\text{time}}\right)}^{-1}\)

δ l :

Microorganism concentration difference factor

η :

Similarity variable

λ :

Velocity ratio parameter

μ :

Dynamic viscosity

ν :

Kinematic viscosity (m2/s)

ω :

Mixed convection parameter

Ω c :

Chemical reaction parameter

ϕ :

Dimensionless concentration of the fluid

ψ :

Stream function

ρ :

Density of the fluid (kgm−3)

ρ m :

Density of motile microorganisms (kgm−3)

ρ p :

Density of nanoparticles (kgm−3)

τ ω :

Shear stress

σ* :

The Stefan-Boltzmann constant

θ :

Dimensionless temperature of the fluid

hnf :

Hybrid nanofluid

f :

Base fluid

References

  1. Hillesdon, A. J., & Pedley, J. J. (1996). Bioconvection in suspensions of oxytacticbacteria: Linear theory. Jfluid mechanics, 324, 223–259. https://doi.org/10.1017/S0022112096007902

    Article  Google Scholar 

  2. Kuznetsov, A. V., Avramenko, A. A., & Geng, P. (2004). Analytical investigation of a falling plume caused by bioconvection of oxytactic bacteria in a fluid saturated porous medium. Int JEngineering Science, 42(5–6), 557–569. https://doi.org/10.1016/j.ijengsci.2003.08.004

    Article  Google Scholar 

  3. Avramenko, A. A., & Kuznetsov, A. V. (2010). Bio-thermal convection caused by combined effect of swimming of oxytactic bacteria and inclined temperature gradient in a shallow fluid layer. Int J Numerical methods for Heat and Fluid flow, 20, 157–173. https://doi.org/10.1108/09615531011016939

    Article  Google Scholar 

  4. Sheremet, M. A., & Pop, I. (2014). Thermo bioconvection in a square porous cavity filled by oxytactic microorganisms. Transport porous media, 103, 191–205. https://doi.org/10.1007/s11242-014-0297-4

    Article  MathSciNet  Google Scholar 

  5. Ahmed, S. E., Oztop, H. F., Mansour, M. A., & Abu-Hamdeh, N. (2010). Magnetohydrodynamic mixed thermo-bioconvection in porous cavity filled by oxytactic micro-organism. Thermal Science, 22(6B), 2711–2721. https://doi.org/10.2298/TSCI161005319A

    Article  Google Scholar 

  6. Balla, C. S., Alluguvelli, R., Naikoti, K., & Makinde, O. D. (2020). Effect of chemical reaction on bioconvection flow in oxytactic microorganisms suspended porous cavity. J Applied and Computational Mechanics, 6(3), 653–664.

    Google Scholar 

  7. Muhammad, N. K., & Sohail, N. (2020). Theoretical treatment of bio-convective Maxwell nanofluid over an exponentially stretching sheet. Canadian Journal of Physics., 98(8), 732–741. https://doi.org/10.1139/cjp-2019-0380

    Article  Google Scholar 

  8. Khan, M. N., Ahmed, A., Ahammad, N. A., Wang, Z., Hassan, A. M., & Elkotb, M. A. (2023). Chemotaxis bioconvection in swirling flow of Maxwell fluid with diffusion-thermo and thermal-diffusion effects. Case Studies in Thermal Engineering, 49, 103334. https://doi.org/10.1016/j.csite.2023.103334

    Article  Google Scholar 

  9. Waini, I., Ishak, A., Grosan, T., & Pop, I. (2020). Mixed convection of a hybrid nanofluid flow along a vertical surface embedded in a porous medium. Int Comm in Heat and Mass Transfer, 114, 104565. https://doi.org/10.1016/j.icheatmasstransfer.2020.104565

    Article  Google Scholar 

  10. Hussain, A., Alshbool, M. H., Abdussattar, A., Rehman, A., Ahmad, H., Nofal, T. A., & Khan, M. R. (2021). A computational model for hybrid nanofluid flow on a rotating surface in the existence of convective condition. Case Studies in Thermal Engineering, 26, 101089. https://doi.org/10.1016/j.csite.2021.101089

    Article  Google Scholar 

  11. Abbas, N., Nadeem, S., Saleem, A., Malik, M. Y., Issakhov, A., & Alharbi, F. M. (2021). Models base study of inclined MHD of hybrid nanofluid flow over nonlinear stretching cylinder. Chinese JPhysics, 69, 109–117. https://doi.org/10.1016/j.cjph.2020.11.019

    Article  MathSciNet  Google Scholar 

  12. Jamshed, W., Nisar, K. S., Isa, S. S. P. M., Batool, S., Abdel-Aty, A. H., & Zakarya, M. (2021). Computational case study on tangent hyperbolic hybrid nanofluid flow: Single phase thermal investigation. Case Studies in Thermal Engineering, 27, 101246. https://doi.org/10.1016/j.csite.2021.101246

    Article  Google Scholar 

  13. Chu, Y. M., Bashir, S., Ramzan, M., & Malik, M. Y. (2023). Model-based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects. Mathematical Methods in the Applied Sciences, 46(10), 11568–11582. https://doi.org/10.1002/mma.8234

    Article  MathSciNet  Google Scholar 

  14. MuhammadNK, ShafiqA., Haifaa, F., Alrihieli, Z. W., Mostafa, A. H., & Mohammad, A. (2023). Theoretical study on thermal efficiencies of Sutterby ternary-hybrid nanofluids with surface catalyzed reactions over a bidirectional expanding surface. Journal of Molecular Liquids, 391(Part B), 123412. https://doi.org/10.1016/j.molliq.2023.123412

    Article  Google Scholar 

  15. Khan, M. N., Hussien, M. A., Ahammad, N. A., Ghazwani, H. A., & El-Shorbagy, M. A. (2023). Insight into the motion of ethylene glycol (fluid) conveying magnesium oxide and aluminium oxide nanoparticles with emphasis on “upper branch” and “lower branch” solutions. Alexandria Engineering Journal, 79, 366–373. https://doi.org/10.1016/j.aej.2023.08.028

    Article  Google Scholar 

  16. Jayadevamurthy, P. G. R., Rangaswamy, N. K., Prasannakumara, B. C., Nisar, K. S. (2020). Emphasis on unsteady dynamics of bioconvective hybrid nanofluid flow over an upward–downward moving rotating disk. Numerical Methods for Partial Differential Equations.https://doi.org/10.1002/num.22680

  17. Khashi’ie, N. S., Arifin, N. M., Pop, I., & Nazar, R. (2021). Dual solutions of bioconvection hybrid nanofluid flow due to gyrotactic microorganisms towards a vertical plate. Chinese JPhysics, 72, 461–474. https://doi.org/10.1016/j.cjph.2021.05.011

    Article  MathSciNet  Google Scholar 

  18. Khan, U., Zaib, A., Ishak, A., Waini, I., Raizah, Z., Prasannakumara, B. C., & Galal, A. M. (2022). Dynamics of bio-convection Agrawal axisymmetric flow of water-based Cu-TiO2 hybrid nanoparticles through a porous moving disk with zero mass flux. Chemical Physics, 561, 111599. https://doi.org/10.1016/j.chemphys.2022.111599

    Article  Google Scholar 

  19. Mahesh, A., Raju, C. S. K., Babu, M. J., Madhusudhana Ra, B., Varma, S. V. K., Prasannakumara, B. C. (2022). Entropy generation optimization in an unsteady hybrid nanofluid flow between two rotating disks: a numerical bioconvection model. Waves in Random and Complex Media, 1–32.https://doi.org/10.1080/17455030.2022.2142320

  20. Khan, M. N., Ahmad, S., Wang, Z., Ahammad, N. A., & Elkotb, M. A. (2023). Bioconvective surface-catalyzed Casson hybrid nanofluid flow analysis by using thermodynamics heat transfer law on a vertical cone. Tribology International, 188, 108859. https://doi.org/10.1016/j.triboint.2023.108859

    Article  Google Scholar 

  21. Naveed Khan, M., Abbas Khan, A., Wang, Z., Alrihieli, H. F., Eldin, S. M., Aldosari, F. M., & Elseesy, I. E. (2023). Flow investigation of the stagnation point flow of micropolar viscoelastic fluid with modified Fourier and Fick’s law. Scientific Reports, 13(1), 9491. https://doi.org/10.1038/s41598-023-36631-1

    Article  Google Scholar 

  22. Gailitis, A. (1961). On a possibility to reduce the hydrodynamic resistance of a plate in an electrolyte. Journal of Applied Magnetohydrodyn, 12, 143–146.

    Google Scholar 

  23. Abdal, S., Siddique, I., Alshomrani, A. S., Jarad, F., Din, I. S. U., & Afzal, S. (2021). Significance of chemical reaction with activation energy for Riga wedge flow of tangent hyperbolic nanofluid in existence of heat source. Case Studies in Thermal Engineering, 28, 101542. https://doi.org/10.1016/j.csite.2021.101542

    Article  Google Scholar 

  24. Basha, H. T., Sivaraj, R., & Animasaun, I. L. (2020). Stability analysis on Ag-MgO/water hybrid nanofluid flow over an extending/contracting Riga wedge and stagnation point. Computational Thermal Sciences: An International Journal, 12(6), 491–508. https://doi.org/10.1615/ComputThermalScien.2020034373

    Article  Google Scholar 

  25. Siddique, I., Khan, Y., Nadeem, M., Awrejcewicz, J., & Bilal, M. (2023). Significance of heat transfer for second-grade fuzzy hybrid nanofluid flow over a stretching/shrinking Riga wedge. AIMS Mathematics, 8(1), 295–316. https://doi.org/10.3934/math

    Article  MathSciNet  Google Scholar 

  26. Yahya, A. U., Siddique, I., Jarad, F., Salamat, N., Abdal, S., Hamed, Y. S., Abualnaja, K. M., & Hussain, S. (2022). On the enhancement of thermal transport of Kerosene oil mixed TiO2 and SiO2 across Riga wedge. Case Studies in Thermal Engineering, 34, 102025. https://doi.org/10.1016/j.csite.2022.102025

    Article  Google Scholar 

  27. Khan, U., Zaib, A., Ishak, A., Waini, I., Madhukesh, J. K., Raizah, Z., & Galal, A. M. (2022). Impact of buoyancy and stagnation-point flow of water conveying Ag-MgO hybrid nanoparticles in a vertical contracting/expanding Riga wedge. Symmetry, 14(7), 1312. https://doi.org/10.3390/sym14071312

    Article  Google Scholar 

  28. Sarwe, D. U., Shanker, B., Mishra, R., Kumar, R. V., & Shekar, M. R. (2021). Simultaneous impact of magnetic and Arrhenius activation energy on the flow of Casson hybrid nanofluid over a vertically moving plate. Int J Thermofluid Sci Technol, 8(2), 1–20. https://doi.org/10.36963/IJTST.2021080202

    Article  Google Scholar 

  29. Ramzan, M., Gul, H., Chung, J. D., Kadry, S., & Chu, Y. M. (2020). Significance of Hall effect and ion slip in a three-dimensional bioconvective tangent hyperbolic nanofluid flow subject to Arrhenius activation energy. Scientific Reports, 10(1), 18342. https://doi.org/10.1038/s41598-020-73365-w

    Article  Google Scholar 

  30. Khan, A., Saeed, A., Tassaddiq, A., Gul, T., Mukhtar, S., Kumam, P., Ali, I., & Kumam, W. (2021). Bio-convective micropolar nanofluid flow over thin moving needle subject to Arrhenius activation energy, viscous dissipation and binary chemical reaction. Case Studies in Thermal Engineering, 25, 100989. https://doi.org/10.1016/j.csite.2021.100989

    Article  Google Scholar 

  31. Ali, B., Pattnaik, P. K., Naqvi, R. A., Waqas, H., & Hussain, S. (2021). Brownian motion and thermophoresis effects on bioconvection of rotating Maxwell nanofluid over a Riga plate with Arrhenius activation energy and Cattaneo-Christov heat flux theory. Thermal Science and Engineering Progress, 23, 100863. https://doi.org/10.1016/j.tsep.2021.100863

    Article  Google Scholar 

  32. Bhatti, M. M., & Michaelides, E. E. (2021). Study of Arrhenius activation energy on the thermo-bioconvection nanofluid flow over a Riga plate. J Thermal Analysis and Calorimetry, 143, 2029–2038. https://doi.org/10.1007/s10973-020-09492-3

    Article  Google Scholar 

  33. Kumar, R. S. V., Alhadhrami, A., Punith Gowda, R. J., Naveen Kumar, R., & Prasannakumara, B. C. (2021). Exploration of Arrhenius activation energy on hybrid nanofluid flow over a curved stretchable surface. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für AngewandteMathematik und Mechanik, 101(12), 202100035. https://doi.org/10.1002/zamm.202100035

    Article  MathSciNet  Google Scholar 

  34. Obalalu, A. M., Ajala, O. A., Akindele, A. O., Alao, S., & Okunloye, A. (2021). Effect of melting heat transfer on electromagnetohydrodynamic non-Newtonian nanofluid flow over a Riga plate with chemical reaction and Arrhenius activation energy. The European Physical Journal Plus, 136(8), 891. https://doi.org/10.1140/epjp/s13360-021-01869-z

    Article  Google Scholar 

  35. Ahmed, S. E., Arafa, A. A., Hussein, S. A. (2023). Bioconvective flow of a variable properties hybrid nanofluid over a spinning disk with Arrhenius activation energy, Soret and Dufour impacts. Numerical Heat Transfer, Part A: Applications, 1–23. https://doi.org/10.1080/10407782.2023.2193709

  36. Muhammad, N. K., Sohail, N., & Noor, M. (2020). Micropolar fluid flow with temperature-dependent transport properties. Heat Transfer, 49(4), 2375–2389. https://doi.org/10.1002/htj.21726

    Article  Google Scholar 

  37. Ahmad, S., Khan, M. N., & Nadeem, S. (2020). Mathematical analysis of heat and mass transfer in a Maxwell fluid with double stratification. Physica Scripta, 96(2), 025202. https://doi.org/10.1088/1402-4896/abcb2a

    Article  Google Scholar 

  38. Khan, M. N., Hussien, M. A., Allehiany, F. M., Ahammad, N. A., Wang, Z., & Algehyne, E. A. (2023). Variable fluid properties and concentration species analysis of a chemically reactive flow of micropolar fluid between two plates in a rotating frame with cross diffusion theory. Tribology International, 189, 108943. https://doi.org/10.1016/j.triboint.2023.108943

    Article  Google Scholar 

  39. Ahsan, N., Nauman Aslam, M., Naveed Khan, M., Elseesy, I. E. (2023). Thermal features of Darcy-Forchheimer on a micropolar fluid flow over a curved stretching surface with homogenous-heterogeneous reactions. Numerical Heat Transfer Part A: Applications, 1–15. https://doi.org/10.1080/10407782.2023.2251082

  40. Oztop, H. F., & Abu-Nada, E. (2008). Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int J Heat Fluid Flow, 29(5), 1326–1336. https://doi.org/10.1016/j.ijheatfluidflow.2008.04.009

    Article  Google Scholar 

  41. Rajagopal, K. R., Gupta, A. S., & Na, T. Y. (1983). A note on the Falkner-Skan flows of a non-Newtonian fluid. Int J NonLinear Mechanics, 18(4), 313–320. https://doi.org/10.1016/0020-7462(83)90028-8

    Article  MathSciNet  Google Scholar 

  42. Kuo, B. L. (2003). Application of the differential transformation method to the solution of Falkner-Skan wedge flow. Acta Mechanica, 164(2–3), 161–174. https://doi.org/10.1007/s00707-003-0019-4

    Article  Google Scholar 

  43. Ishak, A., Nazar, R., & Pop, I. (2007). Falkner-Skan equation for flow past a moving wedge with suction or injection. J Applied Mathematics and Computing, 25(1–2), 67–83. https://doi.org/10.1007/BF02832339

    Article  MathSciNet  Google Scholar 

  44. Atif, S. M., Hussain, S., & Sagheer, M. (2019). Heat and mass transfer analysis of time dependent tangent hyperbolic nanofluid flow past a wedge. Physics letters A, 383(11), 1187–1198. https://doi.org/10.1016/j.physleta.2019.01.003

    Article  MathSciNet  Google Scholar 

  45. White, F. M. (1991). Viscous fluid flow (2nd ed., pp. 267–268). McGraw-Hill.

  46. Khan, W. A., Pop, I. (2013). Boundary layer flow past a wedge moving in a nanofluid. Mathematical Problems in Engineering. https://doi.org/10.1155/2013/637285

  47. Ashwini, G., & Eswara, A. T. (2012). MHD Falkner-Skan boundary layer flow with internal heat generation or absorption. International JMathematical and Computational Sciences, 6(5), 556–559.

    Google Scholar 

  48. Ibrahim, W., Tulu, A. (2019). Magnetohydrodynamic (MHD) boundary layer flow past a wedge with heat transfer and viscous effects of nanofluid embedded in porous media. Mathematical Problems in Engineering. https://doi.org/10.1155/2019/4507852

  49. akabi, B., & Salehi, S. (2014). Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Adv. Mech. Eng., 6, 147059. https://doi.org/10.1155/2014/147059

    Article  Google Scholar 

Download references

Acknowledgements

We thank the reviewers for their valuable comments and suggestions which enabled us to make an improved presentation of the paper.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Author R.K.Mandal wrote the main manuscript draft, draw figures and tables. Author H.Maiti gives the numerical solution, its validity, convergence and writes introduction section. Author S.K. Nandy formulates the mathematical problem and gives the final draft of the manuscript and also writes the physical interpretation of the results.

Corresponding author

Correspondence to Samir Kumar Nandy.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Research Involving Humans and Animals Statement

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Ethics Approval

We furthermore declare that there is no ethical issue in our experiments.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, R.K., Maiti, H. & Nandy, S.K. Scrutinization of Unsteady Bio-convective Stagnation Slip Flow of Hybrid Nanofluid Past a Riga Wedge in the Presence of Activation Energy and Chemical Reaction. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01439-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01439-4

Keywords

Navigation