Skip to main content
Log in

Impact of Motile Microorganisms and Chemical Reaction on Viscoelastic Flow of Non-Newtonian Fluid with Thermal Radiation Subjected to Exponentially Stretching Sheet Amalgamated in Darcy-Forchheimer Porous Medium

  • Research
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The significance of this study lies in its exploration of the viscoelastic flow of bioconvected micropolar nanofluid along with three-dimensional geometry subjected to Darcy-Forchheimer porous stretchable sheet, closing a knowledge void in comprehending the intricate fluid dynamics within biological, engineering, and industrial frameworks. The impact of thermal radiation, chemical reaction and thermal conductivity are the part of the investigation. Similarity variables are used to transform the system of nonlinear PDEs in to set of nonlinear ODEs. Shooting method via matlab is used to solve the resultant ODEs numerically. The study concludes by providing detailed insights into the inspiration of prominent parameters such that thermophoresis parameter Nt, the magnetic parameter M, Brownian motion Nb, the porosity parameter K1, chemical reaction, Peclet number Pe, Schmidt number Sc, mixed convection parameter Gr, Rayleigh number Rb, and buoyancy ratio parameter Re are explained in detail and discussed in the form of graphs, tables, and literature. It is noted that the speed of flow profile is decreased for increasing value of magnetic parameters and porosity parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

References    

  1. Eringen, A. C. (1966). Theory of micropolar fluids. Journal of mathematics and Mechanics, pp. 1–18.

  2. Ahmadi, G. (1976). Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate. International Journal of Engineering Science, 14(7), 639–646.

    Article  Google Scholar 

  3. Kümmerer, H. (1977). Similar laminar boundary layers in incompressible micropolar fluids. Rheologica Acta, 16(3), 261–265.

    Article  Google Scholar 

  4. Sankara, K. K., & Watson, L. T. (1985). Micropolar flow past a stretching sheet. Zeitschrift für angewandte Mathematik und Physik, 36(6), 845–853.

    Article  MathSciNet  Google Scholar 

  5. Das, K., Duari, P. R., & Kundu, P. K. (2014). Nanofluid flow over an unsteady stretching surface in presence of thermal radiation. Alexandria Eng. J, 53(3), 737–745.

    Article  Google Scholar 

  6. Nadeem, S., Haq, R. U., & Khan, Z. H. (2014). Heat transfer analysis of water-based nanofluid over an exponentially stretching sheet. Alexandria Engineering Journal, 53(1), 219–224.

    Article  Google Scholar 

  7. Choi, S. U., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab.(ANL), Argonne, IL (United States).

  8. Mahanthesh, B., Gireesha, B. J., Gorla, R. R., Abbasi, F. M., & Shehzad, S. A. (2016). Numerical solutions for the magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary. Journal of Magnetism and Magnetic Materials, 417, 189–196.

    Article  Google Scholar 

  9. Swain, K., Parida, S. K., & Dash, G. C. (2019). Higher order chemical reaction on MHD nanofluid flow with slip boundary conditions: A numerical approach. Mathematical Modelling of Engineering Problems, 6(2), 293–299.

    Article  Google Scholar 

  10. Shehzad, N. Z. A. E. R. V. K., Zeeshan, A., Ellahi, R., & Vafai, K. (2016). Convective heat transfer of nanofluid in a wavy channel: Buongiorno’s mathematical model. Journal of Molecular Liquids, 222, 446–455.

    Article  Google Scholar 

  11. Shahid, A., Bhatti, M. M., Bég, O. A., & Kadir, A. (2018). Numerical study of radiative Maxwell viscoelastic magnetized flow from a stretching permeable sheet with the Cattaneo-Christov heat flux model. Neural Computing and Applications, 30, 3467–3478.

    Article  Google Scholar 

  12. Mustafa, M. (2015). Cattaneo-Christov heat flux model for rotating flow and heat transfer of upper-convected Maxwell fluid. Aip Advances, 5(4), 047109.

    Article  Google Scholar 

  13. Waqas, M., Hayat, T., Farooq, M., Shehzad, S. A., & Alsaedi, A. (2016). Cattaneo-Christov heat flux model for flow of variable thermal conductivity generalized Burger’s fluid. Journal of Molecular Liquids, 220, 642–648.

    Article  Google Scholar 

  14. Lu, D., Li, Z., Ramzan, M., Shafee, A., & Chung, J. D. (2019). Unsteady squeezing carbon nanotubes-based nano-liquid flow with Cattaneo-Christov heat flux and homogeneous–heterogeneous reactions. Applied Nanoscience, 9, 169–178.

    Article  Google Scholar 

  15. Ahmad, I., Faisal, M., & Javed, T. (2019). Bi-directional stretched nanofluid flow with Cattaneo-Christov double diffusion. Results in Physics, 15, 102581.

    Article  Google Scholar 

  16. Pal, D., & Chatterjee, S. (2013). Soret and Dufour effects on MHD convective heat and mass transfer of a power-law fluid over an inclined plate with variable thermal conductivity in a porous medium. Applied Mathematics and Computation, 219(14), 7556–7574.

    Article  MathSciNet  Google Scholar 

  17. Vajravelu, K., Prasad, K. V., & Ng, C. O. (2013). Unsteady convective boundary layer flow of a viscous fluid at a vertical surface with variable fluid properties. Nonlinear Analysis: Real World Applications, 14(1), 455–464.

    MathSciNet  Google Scholar 

  18. Fourier, J. B. J. (1888). Théorie analytique de la chaleur (vol. 1). Gauthier-Villars.

  19. Cattaneo, C. (1948). Sulla conduzione del calore. Atti del Seminario Matematico e Fisico dell’Università di Modena, 3, 83–101.

    MathSciNet  Google Scholar 

  20. Christov, C. I. (2009). On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mechanics research communications, 36(4), 481–486.

    Article  MathSciNet  Google Scholar 

  21. Straughan, B. (2010). Thermal convection with the Cattaneo-Christov model. International Journal of Heat and Mass Transfer, 53(1–3), 95–98.

    Article  Google Scholar 

  22. Ciarletta, M., & Straughan, B. (2010). Uniqueness and structural stability for the Cattaneo-Christov equations. Mechanics Research Communications, 37(5), 445–447.

    Article  Google Scholar 

  23. Haddad, S. A. M. (2014). Thermal instability in Brinkman porous media with Cattaneo-Christov heat flux. International journal of heat and mass transfer, 68, 659–668.

    Article  Google Scholar 

  24. Tibullo, V., & Zampoli, V. (2011). A uniqueness result for the Cattaneo-Christov heat conduction model applied to incompressible fluids. Mechanics Research Communications, 38(1), 77–79.

    Article  Google Scholar 

  25. Mustafa, M., Mushtaq, A., Hayat, T., & Alsaedi, A. (2016). Rotating flow of magnetite-water nanofluid over a stretching surface inspired by non-linear thermal radiation. PLoS ONE, 11(2), e0149304.

    Article  Google Scholar 

  26. Ali, L., Ali, B., & Iqbal, T. (2023). Finite element analysis of the impact of particles aggregation on the thermal conductivity of nanofluid under chemical reaction. Waves in random and complex Media, pp. 1–21.

  27. Ali, L., Manan, A., & Ali, B. (2022). Maxwell nanofluids: FEM simulation of the effects of suction/injection on the dynamics of rotatory fluid subjected to bioconvection, Lorentz, and Coriolis forces. Nanomaterials, 12(19), 3453.

    Article  Google Scholar 

  28. Ali, L., Wu, Y. J., Ali, B., Abdal, S., & Hussain, S. (2022). The crucial features of aggregation in TiO2-water nanofluid aligned of chemically comprising microorganisms: A FEM approach. Computers & Mathematics with Applications, 123, 241–251.

    Article  MathSciNet  Google Scholar 

  29. Ali, L., Ali, B., & Ghori, M. B. (2022). Melting effect on Cattaneo-Christov and thermal radiation features for aligned MHD nanofluid flow comprising microorganisms to leading edge: FEM approach. Computers & Mathematics with Applications, 109, 260–269.

    Article  MathSciNet  Google Scholar 

  30. Ali, L., Liu, X., Ali, B., Mujeed, S., & Abdal, S. (2019). Finite element simulation of multi-slip effects on unsteady MHD bioconvective micropolar nanofluid flow over a sheet with solutal and thermal convective boundary conditions. Coatings, 9(12), 842.

    Article  Google Scholar 

  31. Ali, L., Kumar, P., Iqbal, Z., Alhazmi, S. E., Areekara, S., Alqarni, M. M., ... & Apsari, R. (2023). The optimization of heat transfer in thermally convective micropolar-based nanofluid flow by the influence of nanoparticle’s diameter and nanolayer via stretching sheet: Sensitivity analysis approach. Journal of Non-Equilibrium Thermodynamics, 48(3), 313–330.

  32. Safdar, R., Jawad, M., Hussain, S., Imran, M., Akgül, A., & Jamshed, W. (2022). Thermal radiative mixed convection flow of MHD Maxwell nanofluid: Implementation of Buongiorno’s model. Chinese Journal of Physics, 77, 1465–1478.

    Article  MathSciNet  Google Scholar 

  33. Jawad, M., Hameed, M. K., Nisar, K. S., & Majeed, A. H. (2023). Darcy-Forchheimer flow of maxwell nanofluid flow over a porous stretching sheet with Arrhenius activation energy and nield boundary conditions. Case Studies in Thermal Engineering, 44, 102830.

    Article  Google Scholar 

  34. Sadiq, N., Jawad, M., Khalid, F., Jahan, S., & Hassan, A. M. (2024). Comparative analysis of non-newtonian and newtonian fluid flow with dual slip in the presence of motile microorganisms and nanoparticles. BioNanoScience, pp. 1–16.

  35. Ramasekhar, G., Jawad, M., Divya, A., Jakeer, S., Ghazwani, H. A., Almutiri, M. R., ... & Ali, M. R. (2024). Heat transfer exploration for bioconvected tangent hyperbolic nanofluid flow with activation energy and joule heating induced by Riga plate. Case Studies in Thermal Engineering, 55, 104100.

  36. Jawad, M., Hussain, S., Mebarek-Oudina, F., & Shehzad, K. (2024). Insinuation of radiative bio-convective MHD flow of Casson nanofluid with activation energy and swimming microorganisms. In Mathematical Modelling of Fluid Dynamics and Nanofluids (pp. 343–362). CRC Press.

  37. Jawad, M., Sadiq, N., & Ali, M. R. (2023). Analysis of chemical reactive tangent hyperbolic nanofluid flow with joule heating and motile microorganisms through stretchable surface. BioNanoScience, pp. 1–14.

  38. Jawad, M., Ghazwani, H. A., Ali, M. R., Hendy, A. S., Majeed, A. H., & Wang, X. (2023). Numerical simulation for thermal radiative flow of tangent hyperbolic nanofluid due to Riga plate in the presence of joule heating. Case Studies in Thermal Engineering, 52, 103686.

    Article  Google Scholar 

  39. Jawad, M., & Nisar, K. S. (2023). Upper-convected flow of Maxwell fluid near stagnation point through porous surface using Cattaneo-Christov heat flux model. Case Studies in Thermal Engineering, 48, 103155.

    Article  Google Scholar 

  40. Nayak, M. K., Akbar, N. S., Tripathi, D., Khan, Z. H., & Pandey, V. S. (2017). MHD 3D free convective flow of nanofluid over an exponentially stretching sheet with chemical reaction. Advanced Powder Technology, 28(9), 2159-2166.

    Article  Google Scholar 

  41. Waseem, M., Naeem, S., Jawad, M., Alroobaea, R., Ali, M. R., Eladeb, A., ... & Hendy, A. S. (2024). Thermal analysis of 3D viscoelastic micropolar nanofluid with cattaneo-christov heat via exponentially stretchable sheet: Darcy-forchheimer flow exploration. Case Studies in Thermal Engineering, 56,104206.

  42. Liu, I. C., Wang, H. H., & Peng, Y. F. (2013). Flow and heat transfer for three-dimensional flow over an exponentially stretching surface. Chemical Engineering Communications, 200(2), 253–268.

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equally contributed to review and write the final draft.

Corresponding author

Correspondence to Muhammad Jawad.

Ethics declarations

Informed Consent

The research does not involve any human subjects; therefore, consent to participate is not applicable.

Consent for Publication

All the authors provide consent for publication.

Conflict of Interest

The authors declare no competing interests.

Research Involving Humans and Animals Statement

The research does not involve any animal trial or case studies; therefore, ethical approval is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waseem, M., Jawad, M., Naeem, S. et al. Impact of Motile Microorganisms and Chemical Reaction on Viscoelastic Flow of Non-Newtonian Fluid with Thermal Radiation Subjected to Exponentially Stretching Sheet Amalgamated in Darcy-Forchheimer Porous Medium. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01435-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01435-8

Keywords

Navigation