Skip to main content
Log in

Exploration of Heat Transfer Rate and Chemically Reactive Bio-convection Flow of Micropolar Nanofluid with Gyrotactic Microorganisms

  • Research
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The focus of this research is the exploration of bio-convection in micropolar nanoparticles. This exploration is influenced by a stretching surface. Micropolar nanofluids are distinguished by their unique rheological properties. Recently, they have gained significant attention due to their potential applications. These applications span across various domains. They include tissue engineering, solar collector efficiency, biotechnology, nano-medicine drug delivery, and biomaterial synthesis. In addition, this study incorporates the characteristics of the heat transfer rate and velocity slip parameter and its relevance to various particle applications, such as heat transfer, fluid concentration, and material processing. In the present study, the nanoliquid flow, velocity slip parameter, and heat and mass transfer over a horizontal stretching sheet under the impact of motile microorganisms are investigated, numerically. These characteristics are under the influence of micro-inertia, micro-rotation, and slip. A numerical technique is used to solve these equations. The solutions are for certain values of the parameters involved. One such parameter is the velocity slip parameter. The classical Navier–Stokes equations of motion are transformed into a simpler form. This transformation is achieved by employing a similarity approach. The resulting system of non-linear equations is solved numerically. This solution is achieved with the aid of a finite difference method. This method is embedded with an iterative successive over the relaxation approach. The impact of relevant flow parameters is elaborated. These parameters include bioconvection, stretching, and nanoparticle concentration. Their impact on temperature and velocity fields is detailed through graphs and tables. The findings reveal that the temperature experiences fluctuations. These fluctuations occur as the microrotation velocity of liquid particles and biological convection increase. There is a notable temperature drop followed by a subsequent rise. This happens when the microorganism concentration limit (omega) is reached. The conclusions of this study are to illuminate how the magnetic field as well as thermal radiation and velocity slip parameters affect the flow pattern, fluid concentration, temperature distributions, and heat transfer rate in the biological fluids near the stretching surface. The calculated results from this study are compared with data available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be available on author’s request.

References

  1. Abdelmalek, Z., Tayebi, T., Dogonchi, A. S., Chamkha, A. J., Ganji, D. D., & Tlili, I. (2020). Role of various configurations of a wavy circular heater on convective heat transfer within an enclosure filled with nanofluid. International Communications in Heat and Mass Transfer, 113, 104525.

    Article  Google Scholar 

  2. Ali, B., Siddique, I., Ahmadian, A., Senu, N., Ali, L., & Haider, A. (2022). Significance of Lorentz and Coriolis forces on dynamics of water based silver tiny particles via finite element simulation. Ain Shams Engineering Journal, 13(2), 101572.

    Article  Google Scholar 

  3. Ahmed, Z., Nadeem, S., Saleem, S., & Ellahi, R. (2019). Numerical study of unsteady flow and heat transfer CNT-based MHD nanofluid with variable viscosity over a permeable shrinking surface. International Journal of Numerical Methods for Heat & Fluid Flow, 29(12), 4607–4623.

    Article  Google Scholar 

  4. Ali, M. E. (1995). On thermal boundary layer on a power-law stretched surface with suction or injection. International Journal of Heat and Fluid Flow, 16(4), 280–290.

    Article  Google Scholar 

  5. Ali, B., Siddique, I., Khan, I., Masood, B., & Hussain, S. (2021). Magnetic dipole and thermal radiation effects on hybrid base micropolar CNTs flow over a stretching sheet: Finite element method approach. Results in Physics, 25, 104145.

    Article  Google Scholar 

  6. Ali, B., Raju, C. S. K., Ali, L., Hussain, S., & Kamran, T. (2021). G-Jitter impact on magnetohydrodynamic non-Newtonian fluid over an inclined surface: Finite element simulation. Chinese Journal of Physics, 71, 479–491.

    Article  MathSciNet  Google Scholar 

  7. Ali, B., Shafiq, A., Siddique, I., Al-Mdallal, Q., & Jarad, F. (2021). Significance of suction/injection, gravity modulation, thermal radiation, and magnetohydrodynamic on dynamics of micropolar fluid subject to an inclined sheet via finite element approach. Case Studies in Thermal Engineering, 28, 101537.

    Article  Google Scholar 

  8. Boujelbene, M., Majeed, A., Baazaoui, N., Barghout, K., Ijaz, N., Abu-Libdeh, N., & Ali, M. R. (2023). Effect of electrostatic force and thermal radiation of viscoelastic nanofluid flow with motile microorganisms surrounded by PST and PHF: Bacillus anthracis in biological applications. Case Studies in Thermal Engineering, 52, 103691.

    Article  Google Scholar 

  9. Bagh, A., Naqvi, R. A., Hussain, D., Aldossary, O. M., & Hussain, S. (2020). Magnetic rotating flow of a hybrid nano-materials Ag-MoS2 and Go-MoS2 in C2H6O2-H2O hybrid base fluid over an extending surface involving activation energy: FE simulation. Mathematics, 8(10), 1730.

    Article  Google Scholar 

  10. Dogonchi, A. S., Asghar, Z., & Waqas, M. (2020). CVFEM simulation for Fe3O4-H2O nanofluid in an annulus between two triangular enclosures subjected to magnetic field and thermal radiation. International Communications in Heat and Mass Transfer, 112, 104449.

    Article  Google Scholar 

  11. Dogonchi, A. S., Nayak, M. K., Karimi, N., Chamkha, A. J., & Ganji, D. D. (2020). Numerical simulation of hydrothermal features of Cu–H 2 O nanofluid natural convection within a porous annulus considering diverse configurations of heater. Journal of Thermal Analysis and Calorimetry, 141, 2109–2125.

    Article  Google Scholar 

  12. Dogonchi, A. S., Tayebi, T., Chamkha, A. J., & Ganji, D. D. (2020). Natural convection analysis in a square enclosure with a wavy circular heater under magnetic field and nanoparticles. Journal of Thermal Analysis and Calorimetry, 139, 661–671.

    Article  Google Scholar 

  13. Dogonchi, A. S., Waqas, M., Gulzar, M. M., Hashemi-Tilehnoee, M., Seyyedi, S. M., & Ganji, D. D. (2019). Simulation of Fe3O4-H2O nanoliquid in a triangular enclosure subjected to Cattaneo-Christov theory of heat conduction. International Journal of Numerical Methods for Heat & Fluid Flow, 29(11), 4430–4444.

    Article  Google Scholar 

  14. Dogonchi, A. S., Waqas, M., Seyyedi, S. M., Hashemi-Tilehnoee, M., & Ganji, D. D. (2020). A modified Fourier approach for analysis of nanofluid heat generation within a semi-circular enclosure subjected to MFD viscosity. International Communications in Heat and Mass Transfer, 111, 104430.

    Article  Google Scholar 

  15. Ellahi, R., Sait, S. M., Shehzad, N., & Ayaz, Z. (2020). A hybrid investigation on numerical and analytical solutions of electro-magnetohydrodynamics flow of nanofluid through porous media with entropy generation. International Journal of Numerical Methods for Heat & Fluid Flow, 30(2), 834–854.

    Article  Google Scholar 

  16. Eringen, A. C. (1964). Simple micro fluids. International Journal of Engineering Science, 2(2), 205–217.

    Article  MathSciNet  Google Scholar 

  17. Eringen, A. C. (1966). Theory of micropolar fluids. Journal of Mathematics and Mechanics, 16, 1–18. https://doi.org/10.1512/iumj.1967.16.16001

    Article  MathSciNet  Google Scholar 

  18. Eringen, A. C., & Chang, T. S. (1970). Micropolar description of hydrodynamic turbulence. Recent Advances in Engineering, Science, 5, 1–8.

    Google Scholar 

  19. Fuzhang, W., Akhtar, S., Nadeem, S., & El-Shafay, A. S. (2022). Mathematical computations for the physiological flow of Casson fluid in a vertical elliptic duct with ciliated heated wavy walls. Waves in Random and Complex Media, 1–14. https://doi.org/10.1080/17455030.2022.2072973

  20. Faiz, M., Tayebi, T., Ali, K., Malekshah, E. H., & Ahmad, S. (2023). Interaction of nanoparticles with motile gyrotactic microorganisms in a Darcy-Forchheimer magnetohydrodynamic flow-A numerical study. Heliyon, 9(7), 1–12. https://doi.org/10.1016/j.heliyon.2023.e17840

    Article  Google Scholar 

  21. Ghadikolaei, S. S., Hosseinzadeh, K., Yassari, M., Sadeghi, H., & Ganji, D. D. (2018). Analytical and numerical solution of non-Newtonian second-grade fluid flow on a stretching sheet. Thermal Science and Engineering Progress, 5, 309–316.

    Article  Google Scholar 

  22. Ghalambaz, M., Groşan, T., & Pop, I. (2019). Mixed convection boundary layer flow and heat transfer over a vertical plate embedded in a porous medium filled with a suspension of nano-encapsulated phase change materials. Journal of Molecular Liquids, 293, 111432.

    Article  Google Scholar 

  23. Ghalambaz, M., Izadpanahi, E., Noghrehabadi, A., & Chamkha, A. (2015). Study of the boundary layer heat transfer of nanofluids over a stretching sheet: Passive control of nanoparticles at the surface. Canadian Journal of Physics, 93(7), 725–733.

    Article  Google Scholar 

  24. Hashemi-Tilehnoee, M., Dogonchi, A. S., Seyyedi, S. M., Chamkha, A. J., & Ganji, D. D. (2020). Magnetohydrodynamic natural convection and entropy generation analyses inside a nanofluid-filled incinerator-shaped porous cavity with wavy heater block. Journal of Thermal Analysis and Calorimetry, 141(5), 2033–2045.

    Article  Google Scholar 

  25. Hassanien, I. A., Abdullah, A. A., & Gorla, R. S. R. (1998). Flow and heat transfer in a power-law fluid over a nonisothermal stretching sheet. Mathematical and Computer Modelling, 28(9), 105–116.

    Article  MathSciNet  Google Scholar 

  26. Hayat, T., Abbas, Z., & Javed, T. (2008). Mixed convection flow of a micropolar fluid over a non-linearly stretching sheet. Physics Letters A, 372(5), 637–647.

    Article  Google Scholar 

  27. Hill, N. A., & Pedley, T. J. (2005). Bioconvection. Fluid Dynamics Research, 37(1–2), 1.

    Article  MathSciNet  Google Scholar 

  28. Hoseinpour, V., & Ghaemi, N. (2018). Green synthesis of manganese nanoparticles: Applications and future perspective–A review. Journal of Photochemistry and Photobiology B: Biology, 189, 234–243.

    Article  Google Scholar 

  29. Izadi, M., Behzadmehr, A., & Shahmardan, M. M. (2015). Effects of inclination angle on mixed convection heat transfer of a nanofluid in a square cavity. International Journal for Computational Methods in Engineering Science and Mechanics, 16(1), 11–21.

    Article  MathSciNet  Google Scholar 

  30. Izadi, M., Javanahram, M., Zadeh, S. M. H., & Jing, D. (2020). Hydrodynamic and heat transfer properties of magnetic fluid in porous medium considering nanoparticle shapes and magnetic field-dependent viscosity. Chinese Journal of Chemical Engineering, 28(2), 329–339.

    Article  Google Scholar 

  31. Izadi, M., Mohebbi, R., Chamkha, A., & Pop, I. (2018). Effects of cavity and heat source aspect ratios on natural convection of a nanofluid in a C-shaped cavity using Lattice Boltzmann method. International Journal of Numerical Methods for Heat & Fluid Flow, 28(8), 1930–1955.

    Article  Google Scholar 

  32. Izadi, M., Shahmardan, M. M., Norouzi, M., Rashidi, A. M., & Behzadmehr, A. (2014). Cooling performance of a nanofluid flow in a heat sink microchannel with axial conduction effect. Applied Physics A, 117, 1821–1833.

    Article  Google Scholar 

  33. Izadi, M., Sinaei, S., Mehryan, S. A. M., Oztop, H. F., & Abu-Hamdeh, N. (2018). Natural convection of a nanofluid between two eccentric cylinders saturated by porous material: Buongiorno’s two phase model. International Journal of Heat and Mass Transfer, 127, 67–75.

    Article  Google Scholar 

  34. Kiwan, S., & Ali, M. E. (2008). Near-slit effects on the flow and heat transfer from a stretching plate in a porous medium. Numerical Heat Transfer, Part A: Applications, 54(1), 93–108.

    Article  Google Scholar 

  35. Khadimallah, M. A., Harbaoui, I., Helaili, S., Benslimane, A., Sharif, H., Hussain, M., & Tounsi, A. (2023). Response of rotational parameter in the stagnation point with motile microorganism: Unsteady nanofluid. Advances in Concrete Construction, 15(4), 241–249.

    Google Scholar 

  36. Kumar, V., Tiwari, A. K., & Ghosh, S. K. (2015). Application of nanofluids in plate heat exchanger: A review. Energy Conversion and Management, 105, 1017–1036.

    Article  Google Scholar 

  37. Lukaszewicz, G. (2012). Micropolar fluids: Theory and applications. Springer Science & Business Media. https://doi.org/10.1007/978-1-4612-0641-5

  38. M. Mehryan, S. A., MoradiKashkooli, F., Soltani, M., & Raahemifar, K. (2016). Fluid flow and heat transfer analysis of a nanofluid containing motile gyrotactic micro-organisms passing a nonlinear stretching vertical sheet in the presence of a non-uniform magnetic field; numerical approach. PLoS One, 11(6), e0157598.

    Article  Google Scholar 

  39. Mabood, F., Khan, W. A., & Ismail, A. M. (2015). MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: A numerical study. Journal of Magnetism and Magnetic Materials, 374, 569–576.

    Article  Google Scholar 

  40. Majeed, A., Zeeshan, A., Bhatti, M. M., & Ellahi, R. (2020). Heat transfer in magnetite (Fe3O4) nanoparticles suspended in conventional fluids: Refrigerant-134a (C2H2F4), kerosene (C10H22), and water (H2O) under the impact of dipole. Heat Transfer Research, 51(3), 217–232. https://doi.org/10.1615/HeatTransRes.2019029919

  41. Makinde, O. D., & Aziz, A. (2011). Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. International Journal of Thermal Sciences, 50(7), 1326–1332.

    Article  Google Scholar 

  42. Mehryan, S. A. M., Izadi, M., & Sheremet, M. A. (2018). Analysis of conjugate natural convection within a porous square enclosure occupied with micropolar nanofluid using local thermal non-equilibrium model. Journal of Molecular Liquids, 250, 353–368.

    Article  Google Scholar 

  43. Mehryan, S. A. M., Kashkooli, F. M., Soltani, M., & Raahemifar, K. (2016). Fluid flow and heat transfer analysis of a nanofluid containing motile microorganisms passing a nonlinear stretching vertical sheet in the presence of a non-uniform magnetic field; numerical approach. PLoS ONE, 11(6), 1–32.

    Article  Google Scholar 

  44. Mishra, S. R., Pattnaik, P. K., & Dash, G. C. (2015). Effect of heat source and double stratification on MHD free convection in a micropolar fluid. Alexandria Engineering Journal, 54(3), 681–689.

    Article  Google Scholar 

  45. Noghrehabadi, A., Pourrajab, R., & Ghalambaz, M. (2012). Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature. International Journal of Thermal Sciences, 54, 253–261.

    Article  Google Scholar 

  46. Platt, J. R. (1961). “Bioconvection patterns” in cultures of free-swimming organisms. Science, 133(3466), 1766–1767.

    Article  Google Scholar 

  47. Ramezanizadeh, M., Nazari, M. A., Ahmadi, M. H., & Açıkkalp, E. (2018). Application of nanofluids in thermosyphons: A review. Journal of Molecular Liquids, 272, 395–402.

    Article  Google Scholar 

  48. Salleh, M. Z., Nazar, R., & Pop, I. (2010). Boundary layer flow and heat transfer over a stretching sheet with Newtonian heating. Journal of the Taiwan Institute of Chemical Engineers, 41(6), 651–655.

    Article  Google Scholar 

  49. Sarafraz, M. M., Pourmehran, O., Yang, B., Arjomandi, M., & Ellahi, R. (2020). Pool boiling heat transfer characteristics of iron oxide nano-suspension under constant magnetic field. International Journal of Thermal Sciences, 147, 106131.

    Article  Google Scholar 

  50. Sheikholeslami, M., & Ganji, D. D. (2017). Applications of nanofluid for heat transfer enhancement. William Andrew.

  51. Tawfik, M. M. (2017). Experimental studies of nanofluid thermal conductivity enhancement and applications: A review. Renewable and Sustainable Energy Reviews, 75, 1239–1253.

    Article  Google Scholar 

  52. Wang, F., Jamshed, W., Ibrahim, R. W., Abdalla, N. S. E., Abd-Elmonem, A., & Hussain, S. M. (2023). Solar radiative and chemical reactive influences on electromagnetic Maxwell nanofluid flow in Buongiorno model. Journal of Magnetism and Magnetic Materials, 576, 170748.

    Article  Google Scholar 

  53. Wang, F., Ahmed, A., Khan, M. N., Ahammad, N. A., Alqahtani, A. M., Eldin, S. M., & Abdelmohimen, M. A. (2023). Natural convection in nanofluid flow with chemotaxis process over a vertically inclined heated surface. Arabian Journal of Chemistry, 16(4), 104599.

    Article  Google Scholar 

  54. Xu, H., & Pop, I. (2014). Mixed convection flow of a nanofluid over a stretching surface with uniform free stream in the presence of both nanoparticles and gyrotactic microorganisms. International Journal of Heat and Mass Transfer, 75, 610–623.

    Article  Google Scholar 

  55. Zadeh, S. M. H., Mehryan, S. A. M., Sheremet, M. A., Izadi, M., & Ghodrat, M. (2020). Numerical study of mixed bio-convection associated with a micropolar fluid. Thermal Science and Engineering Progress, 18, 100539.

    Article  Google Scholar 

Download references

Funding

No funding available.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: A. Majeed; methodology, N. Ijaz; software: A. Majeed and F. Muhammad; validation: A. Majeed and F. Muhammad; writing—original draft preparation: A. Majeed; writing—review and editing: N. Ijaz, K. Barghout, and N. Abu-Libdeh; supervision: N. Ijaz, A. Majeed, and F. Muhammad; project administration: A. Majeed. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Aaqib Majeed.

Ethics declarations

Ethics Approval and Consent to Participate

All procedures performed in the studies comply with ethical standards.

Consent for Publication

All authors have approved the submission of the manuscript. The presented data are original and without fabrication and manipulation.

Conflict of Interest

The authors declare no competing interests.

Research Involving Humans and Animals Statement

None.

Informed Consent

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad, F., Majeed, A., Ijaz, N. et al. Exploration of Heat Transfer Rate and Chemically Reactive Bio-convection Flow of Micropolar Nanofluid with Gyrotactic Microorganisms. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01425-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01425-w

Keywords

Navigation