Skip to main content

Advertisement

Log in

Studying the Efficacy of Copper Oxide Loaded Graphitic Carbon Nitride Nanosheets on VEGF-Induced Angiogenesis in Chick Chorioallantoic Membrane (CAM Assay) In Vivo Studies and Cytotoxicity in Human Hep3B Liver Cancer Cell Lines

  • Research
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Angiogenesis, a hallmark in many cancers, is the uncontrollable formation of blood vessels from the pre-existing vessels and leads to metastasis. The objective of the study was to first time evaluate the influence of CuO-loaded g-C3N4 nanosheets to test its anti-angiogenic activity in the chorioallantoic membrane of chick and viability test in liver cancer cell line. The prepared material was tested using anti-cancer activity in vivo and in vitro analysis. Initially, prepared sphere-shaped-cupric oxide and cupric oxide supported g-C3N4 nanosheet crystallinity, purity, morphology, and physicochemical properties (such as optical and thermal) are analyzed. On the other hand, the prepared materials angiogenesis analysis is examined using a series of chorioallantoic membrane (CAM) assays in the in vivo models which confirmed that the cupric oxide loaded on exfoliated g-C3N4 nanosheets can eradicate the tumor cell. Results also showed that CuO/g-C3N4 nanosheets strongly disturbed the physiological process of angiogenesis in the chorioallantoic membrane blocking the VEGF-induced blood vessel formation. The findings indicate that 40wt% of CuO/g-C3N4 nanocomposite is effective and probably acts as anti-angiogenic therapy compared to other weight percentages of nanocomposite for the suppression of VEGF growth factor activities. Furthermore, the effect on cell viability is analyzed by using a human Hep3B liver cancer cell line when using the 40wt% CuO/g-C3N4 nanocomposite.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

All the data that support the findings of this study are available within the article.

References

  1. Rajabi, M., & Mousa, S. A. (2017). The role of angiogenesis in cancer treatment. Biomedicines, 5(2), 34. https://doi.org/10.3390/biomedicines5020034

    Article  Google Scholar 

  2. Francis, C. R., & Kushner, E. J. (2022). Trafficking in blood vessel development. Angiogenesis, 25(3), 291–305. https://doi.org/10.1007/s10456-022-09838-5

    Article  Google Scholar 

  3. Oguntade, A. S., Al-Amodi, F., Alrumayh, A., Alobaida, M., & Bwalya, M. (2021). Anti-angiogenesis in cancer therapeutics: the magic bullet. Journal of the Egyptian National Cancer Institute, 33(1), 1–11. https://doi.org/10.1186/s43046-021-00072-6

    Article  Google Scholar 

  4. Ribatti, D., Solimando, A. G., & Pezzella, F. (2021). The anti-VEGF (R) drug discovery legacy: improving attrition rates by breaking the vicious cycle of angiogenesis in cancer. Cancers, 13(14), 3433. https://doi.org/10.3390/cancers13143433

    Article  Google Scholar 

  5. Guo, Y., Guo, Y., Chen, C., Fan, D., Wu, X., Zhao, L., Shao, B., Sun, Z., & Ji, Z. (2021). Circ3823 contributes to growth, metastasis and angiogenesis of colorectal cancer: involvement of miR-30c-5p/TCF7 axis. Molecular cancer, 20(1), 93. https://doi.org/10.1186/s12943-021-01372-0

    Article  Google Scholar 

  6. Joga, S., & Koyyala, V. P. B. (2021). Angiogenesis in cancer. IJMPO, 42(02), 168–171. https://doi.org/10.1055/s-0041-1732849

    Article  Google Scholar 

  7. Kalishwaralal, K., Banumathi, E., Pandian, S. R. K., Deepak, V., Muniyandi, J., Eom, S. H., & Gurunathan, S. (2009). Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids and Surfaces. B, Biointerfaces, 73(1), 51–57. https://doi.org/10.1016/j.colsurfb.2009.04.025

    Article  Google Scholar 

  8. Gurunathan, S., Lee, K.-J., Kalishwaralal, K., Sheikpranbabu, S., Vaidyanathan, R., & Eom, S. H. (2009). Antiangiogenic properties of silver nanoparticles. Biomaterials, 30(31), 6341–6350. https://doi.org/10.1016/j.biomaterials.2009.08.008

    Article  Google Scholar 

  9. Nishida, N., Yano, H., Nishida, T., Kamura, T., & Kojiro, M. (2006). Angiogenesis in cancer. Vascular Health and Risk Management, 2(3), 213–219. https://doi.org/10.2147/vhrm.2006.2.3.213

    Article  Google Scholar 

  10. Uttarawichien, T., Kamnerdnond, C., Inwisai, T., Suwannalert, P., Sibmooh, N., & Payuhakrit, W. (2021). Quercetin inhibits colorectal cancer cells induced-angiogenesis in both colorectal cancer cell and endothelial cell through downregulation of VEGF-A/VEGFR2. Scientia Pharmaceutica, 89(2), 23. https://doi.org/10.3390/scipharm89020023

    Article  Google Scholar 

  11. Huang, T.-F., Wang, S.-W., Lai, Y.-W., Liu, S.-C., Chen, Y.-J., Hsueh, T. Y., Lin, C.-C., Lin, C.-H., & Chung, C.-H. (2022). 4-Acetylantroquinonol B suppresses prostate cancer growth and angiogenesis via a VEGF/PI3K/ERK/mTOR-dependent signaling pathway in subcutaneous xenograft and in vivo angiogenesis models. International Journal of Molecular Sciences, 23(3), 1446. https://doi.org/10.3390/ijms23031446

    Article  Google Scholar 

  12. Song, H., Wang, W., Zhao, P., Qi, Z., & Zhao, S. (2014). Cuprous oxide nanoparticles inhibit angiogenesis via down regulation of VEGFR2 expression. Nanoscale, 6(6), 3206–3216. https://doi.org/10.1039/c3nr04363k

    Article  Google Scholar 

  13. Jo, D. H., Kim, J. H., Son, J. G., Piao, Y., Lee, T. G., & Kim, J. H. (2014). Inhibitory activity of gold and silica nanospheres to vascular endothelial growth factor (VEGF)-mediated angiogenesis is determined by their sizes. Nano Research, 7, 844–852. https://doi.org/10.1007/s12274-014-0445-8

    Article  Google Scholar 

  14. Khodabakhsh, F., Merikhian, P., Eisavand, M. R., & Farahmand, L. (2021). Crosstalk between MUC1 and VEGF in angiogenesis and metastasis: a review highlighting roles of the MUC1 with an emphasis on metastatic and angiogenic signaling. Cancer Cell International, 21(1), 200. https://doi.org/10.1186/s12935-021-01899-8

    Article  Google Scholar 

  15. Kennedy, D. C., Coen, B., Wheatley, A. M., & McCullagh, K. J. (2021). Microvascular experimentation in the chick chorioallantoic membrane as a model for screening angiogenic agents including from gene-modified cells. International Journal of Molecular Sciences, 23(1), 452. https://doi.org/10.3390/ijms23010452

    Article  Google Scholar 

  16. Harper, K., Yatsyna, A., Charbonneau, M., Brochu-Gaudreau, K., Perreault, A., Jeldres, C., McDonald, P. P., & Dubois, C. M. (2021). The chicken chorioallantoic membrane tumor assay as a relevant in vivo model to study the impact of hypoxia on tumor progression and metastasis. Cancers, 13(5), 1093. https://doi.org/10.3390/cancers13051093

    Article  Google Scholar 

  17. As, M. N., Deshpande, R., Kale, V. P., Bhonde, R. R., & Datar, S. P. (2018). Establishment of an in ovo chick embryo yolk sac membrane (YSM) assay for pilot screening of potential angiogenic and anti-angiogenic agents. Cell Biology International, 42(11), 1474–1483. https://doi.org/10.1002/cbin.11051

    Article  Google Scholar 

  18. Liang, P., Ballou, B., Lv, X., Si, W., Bruchez, M. P., Huang, W., & Dong, X. (2021). Monotherapy and combination therapy using anti-angiogenic nanoagents to fight cancer. Advanced Materials, 33(15), 2005155. https://doi.org/10.1002/adma.202005155

    Article  Google Scholar 

  19. Lopes-Coelho, F., Martins, F., Pereira, S. A., & Serpa, J. (2021). Anti-angiogenic therapy: current challenges and future perspectives. International Journal of Molecular Sciences, 22(7), 3765. https://doi.org/10.3390/ijms22073765

    Article  Google Scholar 

  20. Liu, Y., Huang, N., Liao, S., Rothzerg, E., Yao, F., Li, Y., Wood, D., & Xu, J. (2021). Current research progress in targeted anti-angiogenesis therapy for osteosarcoma. Cell Proliferation, 54(9), e13102. https://doi.org/10.1111/cpr.13102

    Article  Google Scholar 

  21. Abdalla, A. M., Xiao, L., Ullah, M. W., Yu, M., Ouyang, C., & Yang, G. (2018). Current challenges of cancer anti-angiogenic therapy and the promise of nanotherapeutics. Theranostics, 8(2), 533. https://doi.org/10.7150/thno.21674

    Article  Google Scholar 

  22. Griffioen, A. W., & Dudley, A. C. (2022). The rising impact of angiogenesis research. Angiogenesis, 25(4), 435–437. https://doi.org/10.1007/s10456-022-09849-2

    Article  Google Scholar 

  23. Liu, W., Zhang, G., Wu, J., Zhang, Y., Liu, J., Luo, H., & Shao, L. (2020). Insights into the angiogenic effects of nanomaterials: mechanisms involved and potential applications. Journal of Nanobiotechnology, 18, 1–22. https://doi.org/10.1186/s12951-019-0570-3

    Article  Google Scholar 

  24. Lord, M. S., Tsoi, B., Gunawan, C., Teoh, W. Y., Amal, R., & Whitelock, J. M. (2013). Anti-angiogenic activity of heparin functionalised cerium oxide nanoparticles. Biomaterials, 34(34), 8808–8818. https://doi.org/10.1016/j.biomaterials.2013.07.083

    Article  Google Scholar 

  25. Priya, R. L., & Babu, S. G. (2024). Shape selective studies on different morphological spinel-structured cobalt oxide loaded rGO nanocomposites: a comprehensive, potential and low-temperature coupling reactions. Journal of Physics and Chemistry of Solids, 184, 111711. https://doi.org/10.1016/j.jpcs.2023.111711

    Article  Google Scholar 

  26. Verma, A., Anand, P., Kumar, S., & Fu, Y.-P. (2022). Cu-cuprous/cupric oxide nanoparticles towards dual application for nitrophenol conversion and electrochemical hydrogen evolution. Applied Surface Science, 578, 151795. https://doi.org/10.1016/j.apsusc.2021.151795

    Article  Google Scholar 

  27. Giridasappa, A., Rangappa, D., Shanubhoganahalli Maheswarappa, G., Marilingaiah, N. R., Kagepura Thammaiah, C., Shareef, I. M., Kanchugarakoppal Subbegowda, R., & Doddakunche Shivaramu, P. (2021). Phytofabrication of cupric oxide nanoparticles using Simarouba glauca and Celastrus paniculatus extracts and their enhanced apoptotic inducing and anticancer effects. Applied Nanoscience, 11, 1393–1409. https://doi.org/10.1007/s13204-021-01753-3

    Article  Google Scholar 

  28. Jithul, K., & Samra, K. S. (2022). Cupric oxide based supercapacitors: a review. Journal of Physics: Conference Series, 1, 012120. https://doi.org/10.1088/1742-6596/2267/1/012120

    Article  Google Scholar 

  29. Sumathi, S., Nehru, M., & Vidya, R. (2015). Synthesis, characterization and effect of precipitating agent on the antibacterial properties of cobalt ferrite nanoparticles. Transactions of the Indian Ceramic Society, 74(2), 79–82. https://doi.org/10.1080/0371750X.2015.1011791

    Article  Google Scholar 

  30. Prabhu, S., Daniel Thangadurai, T., Vijai Bharathy, P., & Kalugasalam, P. (2022). Investigation on the photocatalytic and antibacterial activities of green synthesized cupric oxide nanoparticles using Clitoria ternatea. Iran J Catal, 12(1), 1–11. https://doi.org/10.30495/IJC.2022.689547

    Article  Google Scholar 

  31. Al-Jawhari, H., Bin-Thiyab, H., & Elbialy, N. (2022). In vitro antioxidant and anticancer activities of cupric oxide nanoparticles synthesized using spinach leaves extract. Nano-Struct Nano-Objects, 29, 100815. https://doi.org/10.1016/j.nanoso.2021.100815

    Article  Google Scholar 

  32. Cuong, H. N., Pansambal, S., Ghotekar, S., Oza, R., Hai, N. T. T., Viet, N. M., & Nguyen, V.-H. (2022). New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: a review. Environmental Research, 203, 111858. https://doi.org/10.1016/j.envres.2021.111858

    Article  Google Scholar 

  33. Rangarajan, S., Verekar, S., Deshmukh, S. K., Bellare, J. R., Balakrishnan, A., Sharma, S., Vidya, R., & Chimote, G. (2018). Evaluation of anti-bacterial activity of silver nanoparticles synthesised by coprophilous fungus PM0651419. ICNAN, 12 (2), 106–115. https://doi.org/10.1049/iet-nbt.2017.0037.

  34. Hafeez, H. Y., Lakhera, S. K., Bellamkonda, S., Rao, G. R., Shankar, M., Bahnemann, D., & Neppolian, B. (2018). Construction of ternary hybrid layered reduced graphene oxide supported g-C3N4-TiO2 nanocomposite and its photocatalytic hydrogen production activity. International Journal of Hydrogen Energy, 43(8), 3892–3904. https://doi.org/10.1016/j.ijhydene.2017.09.048

    Article  Google Scholar 

  35. Moradi, M., Hasanvandian, F., Isari, A. A., Hayati, F., Kakavandi, B., & Setayesh, S. R. (2021). CuO and ZnO co-anchored on g-C3N4 nanosheets as an affordable double Z-scheme nanocomposite for photocatalytic decontamination of amoxicillin. Appl Catal B: Environmental, 285, 119838. https://doi.org/10.1016/j.apcatb.2020.119838

    Article  Google Scholar 

  36. Thiyagarajan, K., Samuel, S., Kumar, P. S., & Babu, S. G. (2020). C3N4 supported on chitosan for simple and easy recovery of visible light active efficient photocatalysts. Bulletin of Material Science, 43, 1–7. https://doi.org/10.1007/s12034-020-02107-5

    Article  Google Scholar 

  37. Liu, Q., Wang, X., Yang, Q., Zhang, Z., & Fang, X. (2018). Mesoporous g-C3N4 nanosheets prepared by calcining a novel supramolecular precursor for high-efficiency photocatalytic hydrogen evolution. Applied Surface Science, 450, 46–56. https://doi.org/10.1016/j.apsusc.2018.04.175

    Article  Google Scholar 

  38. Bhuvaneswari, C., & Babu, S. G. (2022). Nanoarchitecture and surface engineering strategy for the construction of 3D hierarchical CuS-rGO/g-C3N4 nanostructure: an ultrasensitive and highly selective electrochemical sensor for the detection of furazolidone drug. Journal of Electroanalytical Chemistry, 907, 116080. https://doi.org/10.1016/j.jelechem.2022.116080

    Article  Google Scholar 

  39. Liu, Y., Shen, S., Li, Z., Ma, D., Xu, G., & Fang, B. (2021). Mesoporous g-C3N4 nanosheets with improved photocatalytic performance for hydrogen evolution. Materials Characterization, 174, 111031. https://doi.org/10.1016/j.matchar.2021.111031

    Article  Google Scholar 

  40. Wen, J., Xie, J., Chen, X., & Li, X. (2017). A review on g-C3N4-based photocatalysts. Applied Surface Science, 391, 72–123. https://doi.org/10.1016/j.apsusc.2016.07.030

    Article  Google Scholar 

  41. Li, R., Ren, Y., Zhao, P., Wang, J., Liu, J., & Zhang, Y. (2019). Graphitic carbon nitride (g-C3N4) nanosheets functionalized composite membrane with self-cleaning and antibacterial performance. Journal of Hazardous Materials, 365, 606–614. https://doi.org/10.1016/j.jhazmat.2018.11.033

    Article  Google Scholar 

  42. Sher, M., Shahid, S., & Javed, M. (2021). Synthesis of a novel ternary (g-C3N4 nanosheets loaded with Mo doped ZnO nanoparticles) nanocomposite for superior photocatalytic and antibacterial applications. Journal of Photochemistry and Photobiology B, 219, 112202. https://doi.org/10.1016/j.jphotobiol.2021.112202

    Article  Google Scholar 

  43. Khan, S. B., Faisal, M., Rahman, M. M., Abdel-Latif, I., Ismail, A. A., Akhtar, K., Al-Hajry, A., Asiri, A. M., & Alamry, K. A. (2013). Highly sensitive and stable phenyl hydrazine chemical sensors based on CuO flower shapes and hollow spheres. New Journal of Chemistry, 37(4), 1098–1104. https://doi.org/10.1039/C3NJ40928G

    Article  Google Scholar 

  44. Priya, R. L., Kariyanna, B., Karthi, S., Sudhakaran, R., Babu, S. G., & Vidya, R. (2023). Facile synthesis and characterization of cupric oxide loaded 2D structure graphitic carbon nitride (g-C3N4) nanocomposit. Journal of Fungi, 9(3), 310. https://doi.org/10.3390/jof9030310

    Article  Google Scholar 

  45. Carvalho, S. G., Haddad, F. F., Dos Santos, A. M., Scarim, C. B., Ferreira, L. M. B., Meneguin, A. B., Chorilli, M., & Gremião, M. P. D. (2024). Chitosan surface modification modulates the mucoadhesive, permeation and anti-angiogenic properties of gellan gum/bevacizumab nanoparticles. International Journal Of Biological Macromolecules, 130272. https://doi.org/10.1016/j.ijbiomac.2024.130272

  46. Patil, T. P., Vibhute, A. A., Patil, S. L., Dongale, T. D., & Tiwari, A. P. (2023). Green synthesis of gold nanoparticles via Capsicum annum fruit extract: characterization, antiangiogenic, antioxidant and anti-inflammatory activities. Applied Surface Science Advances, 13, 100372. https://doi.org/10.1016/j.apsadv.2023.100372

    Article  Google Scholar 

  47. Habibzadeh, S. Z., Salehzadeh, A., Moradi-Shoeili, Z., & Shandiz, S. A. S. (2020). A novel bioactive nanoparticle synthesized by conjugation of 3-chloropropyl trimethoxy silane functionalized Fe3O4 and 1-((3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-4-yl) methylene)-2-(4-phenylthiazol-2-yl) hydrazine: assessment on anti-cancer against gastric AGS cancer cells. Molecular Biology Reports, 47(3), 1637–1647. https://doi.org/10.1007/s11033-020-05251-7

    Article  Google Scholar 

  48. Vafaei, S., Sadat Shandiz, S. A., & Piravar, Z. (2020). Zinc-phosphate nanoparticles as a novel anticancer agent: an in vitro evaluation of their ability to induce apoptosis. Biological Trace Element Research, 198(1), 109–117. https://doi.org/10.1007/s12011-020-02054-6

    Article  Google Scholar 

  49. El-Naggar, N. E. A., El-Sawah, A. A., Elmansy, M. F., Elmessiry, O. T., El-Saidy, M. E., El-Sherbeny, M. K., Sarhan, M. T., Elhefnawy, A. A., & Dalal, S. R. (2024). Process optimization for gold nanoparticles biosynthesis by Streptomyces albogriseolus using artificial neural network, characterization and antitumor activities. Scientific Reports, 14(1), 4581. https://doi.org/10.1038/s41598-024-54698-2

    Article  Google Scholar 

  50. Papadopoulos, N., Martin, J., Ruan, Q., Rafique, A., Rosconi, M. P., Shi, E., Pyles, E. A., Yancopoulos, G. D., Stahl, N., & Wiegand, S. J. (2012). Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF trap, ranibizumab and bevacizumab. Angiogenesis, 15, 171–185. https://doi.org/10.1007/s10456-011-9249-6

    Article  Google Scholar 

  51. Nguyen, V. K., Nguyen Thi, V. N., Tran, H. H., Tran Thi, T. P., Truong, T. T., & Vo, V. (2021). A facile synthesis of gC3 N4/BaTiO3 photocatalyst with enhanced activity for degradation of methylene blue under visible light. Bulletin of Material Science, 44, 1–9. https://doi.org/10.1007/s12034-020-02277-2

    Article  Google Scholar 

  52. Bhati, V. S., Takhar, V., Raliya, R., Kumar, M., & Banerjee, R. (2022). Recent advances in g-C3N4 based gas sensors for the detection of toxic and flammable gases: A review. Journal: Nano Express, 3(1), 014003. https://doi.org/10.1088/2632-959X/ac477b

    Article  Google Scholar 

  53. Gopiraman, M., Deng, D., Ganesh Babu, S., Hayashi, T., Karvembu, R., & Kim, I. S. (2015). Sustainable and versatile CuO/GNS nanocatalyst for highly efficient base free coupling reactions. Acs Sustainable Chemistry & Engineering, 3(10), 2478–2488. https://doi.org/10.1021/acssuschemeng.5b00542

    Article  Google Scholar 

  54. Kumar, P. S., Selvakumar, M., Babu, S. G., Jaganathan, S. K., Karuthapandian, S., & Chattopadhyay, S. (2015). Novel CuO/chitosan nanocomposite thin film: facile hand-picking recoverable, efficient and reusable heterogeneous photocatalyst. Rsc Advances, 5(71), 57493–57501. https://doi.org/10.1039/C5RA08783J

    Article  Google Scholar 

  55. Tamaekong, N., Liewhiran, C., & Phanichphant, S. (2014). Synthesis of thermally spherical CuO nanoparticles. Journal of Nanomaterials, 2014:6–6. https://doi.org/10.1155/2014/507978.

  56. Xu, H.-Y., Wu, L.-C., Zhao, H., Jin, L.-G., & Qi, S.-Y. (2015). Synergic effect between adsorption and photocatalysis of metal-free g-C3N4 derived from different precursors. PLoS, 10(11), e0142616. https://doi.org/10.1371/journal.pone.0142616

    Article  Google Scholar 

  57. Pan, Y., Wu, Q., Qin, L., Cai, J., & Du, B. (2014). Gold nanoparticles inhibit VEGF 165-induced migration and tube formation of endothelial cells via the akt pathway. BioMed Research International. https://doi.org/10.1155/2014/418624

    Article  Google Scholar 

  58. Ferrara, N., Damico, L., Shams, N., Lowman, H., & Kim, R. (2006). Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina (Philadelphia, Pa.), 26(8), 859–870. https://doi.org/10.1097/01.iae.0000242842.14624.e7

    Article  Google Scholar 

  59. Mukherjee, A., Paul, M., & Mukherjee, S. (2019). Recent progress in the theranostics application of nanomedicine in lung cancer. Cancers, 11(5), 597. https://doi.org/10.3390/cancers11050597

    Article  Google Scholar 

  60. Ding, X., Su, Y., Wang, C., Zhang, F., Chen, K., Wang, Y., Li, M., & Wang, W. (2017). Synergistic suppression of tumor angiogenesis by the co-delivering of vascular endothelial growth factor targeted siRNA and candesartan mediated by functionalized carbon nanovectors. Acs Applied Materials & Interfaces, 9(28), 23353–23369. https://doi.org/10.1021/acsami.7b04971

    Article  Google Scholar 

  61. Mukherjee, A., Madamsetty, V. S., Paul, M. K., & Mukherjee, S. (2020). Recent advancements of nanomedicine towards antiangiogenic therapy in cancer. International Journal of Molecular Sciences, 21(2), 455. https://doi.org/10.3390/ijms21020455

    Article  Google Scholar 

  62. Giri, S., Karakoti, A., Graham, R. P., Maguire, J. L., Reilly, C. M., Seal, S., Rattan, R., & Shridhar, V. (2013). Nanoceria: a rare-earth nanoparticle as a novel anti-angiogenic therapeutic agent in ovarian cancer. PLoS One1, 8(1), e54578. https://doi.org/10.1371/journal.pone.0054578

    Article  Google Scholar 

  63. Wierzbicki, M., Sawosz, E., Grodzik, M., Prasek, M., Jaworski, S., & Chwalibog, A. (2013). Comparison of anti-angiogenic properties of pristine carbon nanoparticles. Nanoscale Research Letters, 8, 1–8. https://doi.org/10.1186/1556-276X-8-195

    Article  Google Scholar 

  64. Tonini, T., Rossi, F., & Claudio, P. P. (2003). Molecular basis of angiogenesis and cancer. Oncogene, 22(42), 6549–6556. https://doi.org/10.1038/sj.onc.1206816

    Article  Google Scholar 

Download references

Acknowledgements

RLP, NAT, CB, and PP acknowledge VIT for providing the fellowship.

Funding

The authors wish to thank VIT for providing “VIT SEED GRANT (RGEMS) - Sanction Order No.: SG20230001” for carrying out this research work, VIT management for characterization support, and infrastructure. VR acknowledges VIT for providing “VIT SEED GRANT (RGEMS) - Sanction Order No.: SG20230005” for carrying out this research work. RLP, NAT, CB, and PP acknowledge VIT for providing the fellowship.

Author information

Authors and Affiliations

Authors

Contributions

R.L.P.-methodology, analysis, writing-original draft preparation; NA.T.N.-cytotoxicity analysis; R.V.-methodology, anti-angiogenesis analysis, and writing-review and editing; C.B.-materials synthesis; P.P.-materials synthesis; S.K.-methodology, writing-review and editing; B.K.-methodology, writing-review and editing; R.S.-methodology, writing-review and editing; S.G.B.-design, conceptualization, writing-review and editing.

Corresponding author

Correspondence to Sundaram Ganesh Babu.

Ethics declarations

Ethical Approval

Not applicable.

Consent for Publication

We, the authors of this manuscript, give our consent for the publication of the above-titled manuscript to be published in this journal.

Competing Interests

The authors declare no competing interests.

Research Involving Humans and Animals Statement

This article does not research with humans or animals.

Informed Consent

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priya, R.L., Thaiparambil, N.A., Vidya, R. et al. Studying the Efficacy of Copper Oxide Loaded Graphitic Carbon Nitride Nanosheets on VEGF-Induced Angiogenesis in Chick Chorioallantoic Membrane (CAM Assay) In Vivo Studies and Cytotoxicity in Human Hep3B Liver Cancer Cell Lines. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01424-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01424-x

Keywords

Navigation