Skip to main content

Advertisement

Log in

Effects of Silicon Application at Nano and Micro Scales on the Growth and Nutrient Uptake of Potato Minitubers (Solanum tuberosum var. Agria) in Greenhouse Conditions

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Silicon has shown to have significant improving effects on nutrient uptake in plants. In this research, the effects of four different silicon compounds (nanosilica, sodium silicate, nanoclay, and Bentonite) in two concentrations (1000 and 2000 ppm) on the growth characteristics and nutrient uptake of potato (Solanum tuberosum var. Agria) plants have been investigated. Silicon treatments, except sodium silicate, improved leaf properties (up to 18% in leaf dry weight in Bentonite (1000 ppm)) and increased stem diameter (up to 17% in nanoclay and Bentonite (1000 ppm)). All root characteristics were enhanced when silicon was applied (up to 54% in root area per plant in sodium silicate (1000 ppm)). Although minituber production was not affected by silicon treatments, minituber quality characteristics were improved by silicon application in comparison with the control plants. Si, Mo, K, and P contents increased, while Al and Mn contents decreased in both tuber and plant in Si application treatments. Whereas Mg, Zn, and Fe contents were lower in Si-treated plants, Si content favorably increased in tubers. Si content in plants showed an increasing pattern of nanosilica < Bentonite < nanoclay < sodium silicate with regard to the Silicon source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Savvas, D., & Ntatsi, G. (2015). Biostimulant activity of silicon in horticulture. Scientia Horticulturae, 196, 66–81. https://doi.org/10.1016/j.scienta.2015.09.010.

    Article  Google Scholar 

  2. Hashemi, A., Abdolzadeh, A., & Sadeghipour, H. R. (2010). Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L., plants. Soil Science and Plant Nutrition, 56(2), 244–253. https://doi.org/10.1111/j.1747-0765.2009.00443.x.

    Article  Google Scholar 

  3. Van Bockhaven, J., De Vleesschauwer, D., & Höfte, M. (2013). Towards establishing broad-spectrum disease resistance in plants: silicon leads the way. Journal of Experimental Botany, 64(5), 1281–1293. https://doi.org/10.1093/jxb/ers329.

    Article  Google Scholar 

  4. Zhao, D., Hao, Z., Tao, J., & Han, C. (2013). Silicon application enhances the mechanical strength of inflorescence stem in herbaceous peony (Paeonia lactiflora Pall.) Scientia Horticulturae, 151, 165–172. https://doi.org/10.1016/j.scienta.2012.12.013.

    Article  Google Scholar 

  5. Pilon, C., Soratto, R. P., & Moreno, L. A. (2013). Effects of soil and foliar application of soluble silicon on mineral nutrition, gas exchange, and growth of potato plants. Crop Science, 53(4), 1605–1614. https://doi.org/10.2135/cropsci2012.10.0580.

    Article  Google Scholar 

  6. Mehrabanjoubani, P., Abdolzadeh, A., Sadeghipour, H. R., & Aghdasi, M. (2015). Silicon affects transcellular and apoplastic uptake of some nutrients in plants. Pedosphere, 25(2), 192–201. https://doi.org/10.1016/S1002-0160(15)60004-2.

    Article  Google Scholar 

  7. Kamenidou, S., Cavins, T. J., & Marek, S. (2009). Evaluation of silicon as a nutritional supplement for greenhouse zinnia production. Scientia Horticulturae, 119(3), 297–301. https://doi.org/10.1016/j.scienta.2008.08.012.

    Article  Google Scholar 

  8. Nanayakkara, U. N., Uddin, W., & Datnoff, L. E. (2008). Application of silicon sources increases silicon accumulation in perennial ryegrass turf on two soil types. Plant and Soil, 303(1–2), 83–94. https://doi.org/10.1007/s11104-007-9488-x.

    Article  Google Scholar 

  9. Iwama, K. (2008). Physiology of the potato: New insights into root system and repercussions for crop management. Potato Research, 51(3–4), 333–353. https://doi.org/10.1007/s11540-008-9120-3.

    Article  Google Scholar 

  10. Gregory, P. J., & Simmonds, L. P. (1992). Water relations and growth of potatoes. In P. M. Harris (Ed.), The potato crop: the scientific basis for improvement (pp. 214–246). Dordrecht: Springer Netherlands.

    Chapter  Google Scholar 

  11. Palta, J. A., Chen, X., Milroy, S. P., Rebetzke, G. J., Dreccer, M. F., & Watt, M. (2011). Large root systems: are they useful in adapting wheat to dry environments? Functional Plant Biology, 38(5), 347–354. https://doi.org/10.1071/FP11031.

    Article  Google Scholar 

  12. Chang, D., Cho, I., Suh, J.-T., Kim, S., & Lee, Y. (2011). Growth and yield response of three aeroponically grown potato cultivars (Solanum tuberosum L.) to different electrical conductivities of nutrient solution. American Journal of Potato Research, 88(6), 450–458. https://doi.org/10.1007/s12230-011-9211-6.

    Article  Google Scholar 

  13. Chang, D., Park, C., Kim, S., Kim, S., & Lee, Y. (2008). Physiological growth responses by nutrient interruption in aeroponically grown potatoes. American Journal of Potato Research, 85(5), 315–323. https://doi.org/10.1007/s12230-008-9024-4.

    Article  Google Scholar 

  14. Corrêa, R. M., Pinto, J. E. B. P., Pinto, C. A. B. P., Faquin, V., Reis, É. S., Monteiro, A. B., & Dyer, W. E. (2008). A comparison of potato seed tuber yields in beds, pots and hydroponic systems. Scientia Horticulturae, 116(1), 17–20. https://doi.org/10.1016/j.scienta.2007.10.031.

    Article  Google Scholar 

  15. Gonçalves, J. F., Antes, F. G., Maldaner, J., Pereira, L. B., Tabaldi, L. A., Rauber, R., & Nicoloso, F. T. (2009). Cadmium and mineral nutrient accumulation in potato plantlets grown under cadmium stress in two different experimental culture conditions. Plant Physiology and Biochemistry, 47(9), 814–821. https://doi.org/10.1016/j.plaphy.2009.04.002.

    Article  Google Scholar 

  16. Park, S. W., Jeon, J. H., Kim, H. S., Hong, S. J., Aswath, C., & Joung, H. (2009). The effect of size and quality of potato microtubers on quality of seed potatoes in the cultivar ‘superior’. Scientia Horticulturae, 120(1), 127–129. https://doi.org/10.1016/j.scienta.2008.09.004.

    Article  Google Scholar 

  17. Ma, J. F., & Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in Plant Science, 11(8), 392–397. https://doi.org/10.1016/j.tplants.2006.06.007.

    Article  Google Scholar 

  18. Bouma, T., Nielsen, K., & Koutstaal, B. (2000). Sample preparation and scanning protocol for computerized analysis of root length and diameter. Plant and Soil, 218(1–2), 185–196. https://doi.org/10.1023/A:1014905104017.

    Article  Google Scholar 

  19. Gomez, M. R., Cerutti, S., Sombra, L. L., Silva, M. F., & Martínez, L. D. (2007). Determination of heavy metals for the quality control in Argentinian herbal medicines by ETAAS and ICP-OES. Food and Chemical Toxicology, 45(6), 1060–1064. https://doi.org/10.1016/j.fct.2006.12.013.

    Article  Google Scholar 

  20. Wilson, M. J. (2007). Handbook of clay science, F. Bergaya, B.K.G. Theng, G. Lagaly (Eds.). Elsevier, Amsterdam.

  21. Ada, R. (2013). Cluster analysis and adaptation study for safflower genotypes. Bulgarian Journal of Agricultural Science, 19(1), 103–109.

    Google Scholar 

  22. Shaterian, J., Waterer, D., Jong, H. D., & Tanino, K. K. (2005). Differential stress responses to NaCl salt application in early- and late-maturing diploid potato (Solanum sp.) clones. Environmental and Experimental Botany, 54(3), 202–212. https://doi.org/10.1016/j.envexpbot.2004.07.005.

    Article  Google Scholar 

  23. Dakora, F. D., & Nelwamondo, A. (2003). Silicon nutrition promotes root growth and tissue mechanical strength in symbiotic cowpea. Functional Plant Biology, 30(9), 947–953.

    Article  Google Scholar 

  24. Crusciol, C. A. C., Pulz, A. L., Lemos, L. B., Soratto, R. P., & Lima, G. P. P. (2009). Effects of silicon and drought stress on tuber yield and leaf biochemical characteristics in potato. Crop Science, 49(3). doi: https://doi.org/10.2135/cropsci2008.04.0233.

  25. Guntzer, F., Keller, C., & Meunier, J.-D. (2012). Benefits of plant silicon for crops: a review. Agronomy for Sustainable Development, 32(1), 201–213. https://doi.org/10.1007/s13593-011-0039-8.

    Article  Google Scholar 

  26. Libault, M., Brechenmacher, L., Cheng, J., Xu, D., & Stacey, G. (2010). Root hair systems biology. Trends in Plant Science, 15(11), 641–650. https://doi.org/10.1016/j.tplants.2010.08.010.

    Article  Google Scholar 

  27. Feng, J., Ma, S. G., Tamai, K., & Ichii, M. (2001). Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiology, 127(4), 1773–1780. https://doi.org/10.1104/pp.010271.

    Article  Google Scholar 

  28. Ma, J. F., Tamai, K., Ichii, M., & Wu, G. F. (2002). A rice mutant defective in Si uptake1. Plant Physiology, 130(4), 2111–2117. https://doi.org/10.1104/pp.010348.

    Article  Google Scholar 

  29. Vulavala, V. R., Elbaum, R., Yermiyahu, U., Fogelman, E., Kumar, A., & Ginzberg, I. (2015). Silicon fertilization of potato: expression of putative transporters and tuber skin quality. Planta, 1–13. doi: https://doi.org/10.1007/s00425-015-2401-6.

  30. Lebot, V. (2009). Tropical root and tuber crops: cassava, sweet potato, yams and aroids: CABI.

  31. Lommen, W. J. M. (1994). Effect of weight of potato minitubers on sprout growth, emergence and plant characteristics at emergence. Potato Research, 37(3), 315–322. https://doi.org/10.1007/bf02360524.

    Article  Google Scholar 

  32. Mitani, N., & Ma, J. F. (2005). Uptake system of silicon in different plant species. Journal of Experimental Botany, 56(414), 1255–1261. https://doi.org/10.1093/jxb/eri121.

    Article  Google Scholar 

  33. Ma, J. F. (2005). Plant root responses to three abundant soil minerals: silicon, aluminum and iron. Critical Reviews in Plant Sciences, 24(4), 267–281. https://doi.org/10.1080/07352680500196017.

    Article  Google Scholar 

  34. Ma, J. F., & Yamaji, N. (2008). Functions and transport of silicon in plants. Cellular and Molecular Life Sciences, 65(19), 3049–3057. https://doi.org/10.1007/s00018-008-7580-x.

    Article  Google Scholar 

  35. White, P. J., & Broadley, M. R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, 182(1), 49–84. https://doi.org/10.1111/j.1469-8137.2008.02738.x.

    Article  Google Scholar 

  36. Karley, A. J., & White, P. J. (2009). Moving cationic minerals to edible tissues: potassium, magnesium and calcium. Current Opinion in Plant Biology, 12(3), 291–298. https://doi.org/10.1016/j.pbi.2009.04.013.

    Article  Google Scholar 

  37. Shaul, O. (2002). Magnesium transport and function in plants: the tip of the iceberg. Biometals, 15(3), 307–321. https://doi.org/10.1023/A:1016091118585.

    Article  Google Scholar 

  38. Brackhage, C., Schaller, J., Bäucker, E., & Dudel, E. G. (2013). Silicon availability affects the stoichiometry and content of calcium and micro nutrients in the leaves of common reed. SILICON, 5(3), 199–204. https://doi.org/10.1007/s12633-013-9145-3.

    Article  Google Scholar 

  39. Ma, J., & Takahashi, E. (1993). Interaction between calcium and silicon in water-cultured rice plants. Plant and Soil, 148(1), 107–113. https://doi.org/10.1007/BF02185390.

    Article  Google Scholar 

  40. Meharg, C., & Meharg, A. A. (2015). Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environmental and Experimental Botany, 120, 8–17. https://doi.org/10.1016/j.envexpbot.2015.07.001.

    Article  Google Scholar 

  41. Mali, M., & Aery, N. C. (2009). Effect of silicon on growth, biochemical constituents, and mineral nutrition of cowpea. Communications in Soil Science and Plant Analysis, 40(7–8), 1041–1052. https://doi.org/10.1080/00103620902753590.

    Article  Google Scholar 

  42. Kobayashi, T., & Nishizawa, N. K. (2012). Iron uptake, translocation, and regulation in higher plants. Annual Review of Plant Biology, 63(1), 131–152. https://doi.org/10.1146/annurev-arplant-042811-105522.

    Article  Google Scholar 

  43. Briat, J.-F., Curie, C., & Gaymard, F. (2007). Iron utilization and metabolism in plants. Current Opinion in Plant Biology, 10(3), 276–282. https://doi.org/10.1016/j.pbi.2007.04.003.

    Article  Google Scholar 

  44. Ma, J. F., & Takahashi, E. (2002). Soil, fertilizer, and plant silicon research in Japan: Elsevier.

  45. Anwaar, S., Ali, S., Ali, S., Ishaque, W., Farid, M., Farooq, M., & Sharif, M. (2015). Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage. Environmental Science and Pollution Research, 22(5), 3441–3450. https://doi.org/10.1007/s11356-014-3938-9.

    Article  Google Scholar 

  46. Kaya, C., Tuna, A. L., Sonmez, O., Ince, F., & Higgs, D. (2009). Mitigation effects of silicon on maize plants grown at high zinc. Journal of Plant Nutrition, 32(10), 1788–1798. https://doi.org/10.1080/01904160903152624.

    Article  Google Scholar 

  47. da Cunha, K., & do Nascimento, C. (2009). Silicon effects on metal tolerance and structural changes in maize (Zea mays l.) grown on a cadmium and zinc enriched soil. Water, Air, and Soil Pollution, 197(1–4), 323–330. https://doi.org/10.1007/s11270-008-9814-9.

    Article  Google Scholar 

  48. Neumann, D., & zur Nieden, U. (2001). Silicon and heavy metal tolerance of higher plants. Phytochemistry, 56(7), 685–692. https://doi.org/10.1016/S0031-9422(00)00472-6.

    Article  Google Scholar 

  49. Liang, Y., Sun, W., Zhu, Y.-G., & Christie, P. (2007). Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environmental Pollution, 147(2), 422–428. https://doi.org/10.1016/j.envpol.2006.06.008.

    Article  Google Scholar 

  50. Kidd, P. S., Llugany, M., Poschenrieder, C., Gunsé, B., & Barceló, J. (2001). The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.) Journal of Experimental Botany, 52(359), 1339–1352. https://doi.org/10.1093/jexbot/52.359.1339.

    Google Scholar 

  51. Prabagar, S., Hodson, M. J., & Evans, D. E. (2011). Silicon amelioration of aluminium toxicity and cell death in suspension cultures of Norway spruce (Picea abies (L.) Karst.) Environmental and Experimental Botany, 70(2–3), 266–276. https://doi.org/10.1016/j.envexpbot.2010.10.001.

    Article  Google Scholar 

  52. Pittman, J. K. (2005). Managing the manganese: molecular mechanisms of manganese transport and homeostasis. New Phytologist, 167(3), 733–742. https://doi.org/10.1111/j.1469-8137.2005.01453.x.

    Article  Google Scholar 

  53. Doncheva, S., Poschenrieder, C., Stoyanova, Z., Georgieva, K., Velichkova, M., & Barceló, J. (2009). Silicon amelioration of manganese toxicity in Mn-sensitive and Mn-tolerant maize varieties. Environmental and Experimental Botany, 65(2–3), 189–197. https://doi.org/10.1016/j.envexpbot.2008.11.006.

    Article  Google Scholar 

  54. Liang, Y., Zhang, W., Chen, Q., Liu, Y., & Ding, R. (2006). Effect of exogenous silicon (Si) on H+−ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.) Environmental and Experimental Botany, 57(3), 212–219. https://doi.org/10.1016/j.envexpbot.2005.05.012.

    Article  Google Scholar 

  55. Tuna, A. L., Kaya, C., Higgs, D., Murillo-Amador, B., Aydemir, S., & Girgin, A. R. (2008). Silicon improves salinity tolerance in wheat plants. Environmental and Experimental Botany, 62(1), 10–16. https://doi.org/10.1016/j.envexpbot.2007.06.006.

    Article  Google Scholar 

  56. Ma, J., & Takahashi, E. (1990). Effect of silicon on the growth and phosphorus uptake of rice. Plant and Soil, 126(1), 115–119. https://doi.org/10.1007/BF00041376.

    Article  Google Scholar 

  57. Jianfeng, M. A., & Takahashi, E. (1991). Effect of silicate on phosphate availability for rice in a P-deficient soil. Plant and Soil, 133(2), 151–155. https://doi.org/10.1007/BF00009187.

    Article  Google Scholar 

  58. Miao, B.-H., Han, X.-G., & Zhang, W.-H. (2010). The ameliorative effect of silicon on soybean seedlings grown in potassium-deficient medium. Annals of Botany. https://doi.org/10.1093/aob/mcq063.

  59. Liang, Y. (1999). Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant and Soil, 209(2), 217–224. https://doi.org/10.1023/A:1004526604913.

    Article  Google Scholar 

  60. Uddin, F. (2008). Clays, nanoclays, and montmorillonite minerals. Metallurgical and Materials Transactions A, 39(12), 2804–2814. https://doi.org/10.1007/s11661-008-9603-5.

    Article  Google Scholar 

Download references

Acknowledgements

This research is part of a PhD thesis founded by the Department of Agronomy and Plant Breeding at Ferdowsi University of Mashhad, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Kafi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, M., Kafi, M., Nezami, A. et al. Effects of Silicon Application at Nano and Micro Scales on the Growth and Nutrient Uptake of Potato Minitubers (Solanum tuberosum var. Agria) in Greenhouse Conditions. BioNanoSci. 8, 218–228 (2018). https://doi.org/10.1007/s12668-017-0467-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-017-0467-2

Keywords

Navigation