Skip to main content

Advertisement

Log in

Biosynthesis of Zinc Oxide Nanoparticles Using Plant Extracts of Aloe vera and Hibiscus sabdariffa: Phytochemical, Antibacterial, Antioxidant and Anti-proliferative Studies

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The zinc oxide (ZnO) nanoparticles were successfully synthesized by using aqueous extracts of Aloe vera gel/leaf and Hibiscus sabdariffa leaf, and characterized by FT IR, UV-Vis, XRD, SEM, and EDX techniques. For comparison purposes, ZnO nanoparticles was also synthesized by chemical method. Phytochemical screening of the A. vera gel and leaf and H. sabdariffa leaf extracts showed the presence of alkaloids, carbohydrates, flavonoids, gums and mucilages, saponins, phenolic compounds, tannins, and terpenoids. FT IR spectra showed the presence of functional groups and protein as the stabilizing agent surrounding the ZnO nanoparticles. UV-Vis spectra of ZnO nanoparticles exhibit the characteristic absorption band in the range of 344–360 nm, which can be assigned to the intrinsic bandgap absorption of ZnO due to the electron transitions from the valence band to the conduction band. Powder XRD patterns confirmed the hexagonal wurtzite structure. Further, the SEM analysis also indicates the hexagonal rod shape structure of the ZnO nanoparticles. EDX spectra confirmed the chemical composition of the ZnO nanoparticles synthesized by both biological and chemical methods. In vitro antibacterial activity of ZnO nanoparticles synthesized by both biological and chemical methods were performed on three Gram (−ve) (Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) and one Gram (+ve) (Staphylococcus aureus) bacteria, in which the ZnO nanoparticles obtained by biological method showed excellent bactericidal activity over that obtained by chemical method. All the ZnO nanoparticles showed promising antioxidant activity determined by five different methods such as 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS); 2,2′-diphenyl-1-picrylhydrazyl (DPPH); hydrogen peroxide (H2O2); superoxide radical scavenging; and hydroxyl radical scavenging assays. In vitro cytotoxicity of the ZnO nanoparticles were tested against three cancerous cell lines such as human breast adenocarcinoma (MCF-7), cervical (HeLa) and epithelioma (Hep-2), and one normal human dermal fibroblasts (NHDF) cell lines by MTT assay. Apoptosis induction was further confirmed by flow cytometry and cell cycle arrest. The ZnO nanoparticles obtained by biological method display remarkable cytotoxicity against the MCF-7 cell line, and found to be more potent than the widely used drug cisplatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Crabtree, J. H., Burchette, R. J., Siddiqi, R. A., Huen, I. T., Handott, L. L., & Fishman, A. (2003). The efficacy of silver-ion implanted catheters in reducing peritoneal dialysis-related infections. Peritoneal Dialysis International, 23, 368–374.

    Google Scholar 

  2. Rasmussen, J. W., Martinez, E., Louka, P., & Wingett, D. G. (2010). Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opinion on Drug Delivery, 7, 1063–1077.

    Article  Google Scholar 

  3. Dagdeviren, C., Hwang, S. W., Su, Y., Kim, S., Cheng, H., Gur, O., Haney, R., Omenetto, F. G., Huang, Y., & Rogers, J. A. (2013). Transient, biocompatible electronics and energy harvesters based on ZnO. Small, 9, 3398–3404.

    Article  Google Scholar 

  4. Brown, H. E. (1957). Zinc oxide rediscovered. New York: The New Jersey Zinc Company.

    Google Scholar 

  5. Alivov, Y. I., Kalinina, E. V., Cherenkov, A. E., Look, D. C., Ataev, B. M., Omaev, A. K., Chukichev, M. V., & Bagnall, D. M. (2003). Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Applied Physics Letters, 83, 4719–4721.

    Article  Google Scholar 

  6. Fortuny, A., Bengoa, C., Font, J., & Fabregat, A. (1999). Bimetallic catalysts for continuous catalytic wet air oxidation of phenol. Journal of Hazardous Materials, 64, 181–193.

    Article  Google Scholar 

  7. Rana, S., Rawat, J., Sorensson, M. M., & Misra, R. D. K. (2006). Antimicrobial function of Nd 3+-doped anatase titania-coated nickel ferrite composite nanoparticles: a biomaterial system. Acta Biomaterialia, 2, 421–432.

    Article  Google Scholar 

  8. Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13, 2638–2650.

    Article  Google Scholar 

  9. Badri, N. K., & Sakthivel, N. (2008). Coriander leaf mediated biosynthesis of gold nanoparticles. Materials Letters, 62, 4588–4590.

    Article  Google Scholar 

  10. Begum, N. A., Mondal, S. B., Laskar, R. A., & Mandal, D. (2009). Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of black tea leaf extracts. Colloids and Surfaces B: Biointerfaces, 1, 113–118.

    Article  Google Scholar 

  11. Gunalan, S., Sivaraj, R., & Rajendran, V. (2012). Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Progress in Natural Science: Materials International, 22, 693–700.

    Article  Google Scholar 

  12. Romeilah, M. R., Fayed, A. S., & Mahmoud, G. I. (2010). Chemical compositions, antiviral and antioxidant activities of seven essential oils. Journal of Applied Sciences Research, 6, 50–62.

    Google Scholar 

  13. Habeeb, F., Shakir, E., Bradbury, F., Cameron, P., Taravati, M. R., Drummond, A. J., Gray, A. I., & Ferro, V. A. (2007). Screening methods used to determine the anti-microbial properties of Aloe vera inner gel. Methods, 42, 315–320.

    Article  Google Scholar 

  14. Ni, Y., & Tizard, I. R. (2004). Analytical methodology: The gel-analysis of Aloe pulp and its derivatives. In T. Reynolds (Ed.), Aloes the genus Aloe (pp. 111–126). CRC Press: Boca Raton.

    Google Scholar 

  15. Ni, Y., Turner, D., Yates, K. M., & Tizard, I. (2004). Isolation and characterization of structural components of Aloe vera L. leaf pulp. International Immunopharmacology, 4, 1745–1755.

    Article  Google Scholar 

  16. Dagne, E., Bisrat, D., Viljoen, A., & Wyk, B. E. V. (2000). Chemistry of Aloe species. Current Organic Chemistry, 4, 1055–1078.

    Article  Google Scholar 

  17. Sharaf, A. (1962). The pharmacological characteristics of Hibiscus sabdariffa L. Planta Medica, 10, 48–52.

    Article  Google Scholar 

  18. Salleh, N., Runnie, I., Roach, D., Mohamed, S., & Abeywardena, M. Y. (2002). Inhibition of low-density lipoprotein oxidation and up-regulation of low-density lipoprotein receptor in HepG2 cells by tropical plant extracts. Journal of Agricultural and Food Chemistry, 50, 3693–3697.

    Article  Google Scholar 

  19. Lin, H. H., Chen, J. H., & Wang, C. J. (2011). Chemopreventive properties and molecular mechanisms of the bioactive compounds in Hibiscus sabdariffa linne. Current Medicinal Chemistry, 18, 1245–1254.

    Article  Google Scholar 

  20. Ajiboye, T. O., Salawu, N. A., Yakubu, M. Y., Oladiji, A. T., Akanjia, M. A., & Okogunc, J. I. (2011). Antioxidant and drug detoxification potentials of Hibiscus sabdariffa anthocyanin extract. Drug and Chemical Toxicology, 34, 109–115.

    Article  Google Scholar 

  21. Jiménez-Ferrer, E., Alarcón-Alonso, J., Aguilar-Rojas, A., Zamilpa, A., Jiménez-Ferrer, C. I., Tortoriello, J., & Herrera-Ruiz, M. (2012). Diuretic effect of compounds from Hibiscus sabdariffa by modulation of the aldosterone activity. Planta Medica, 78, 1893–1898.

    Article  Google Scholar 

  22. Alshami, I., & Alharbi, A. E. (2014). Antimicrobial activity of Hibiscus sabdariffa extract against uropathogenic strains isolated from recurrent urinary tract infections. Asian Pacific Journal of Tropical Disease, 4, 317–322.

    Article  Google Scholar 

  23. Wu, C., Qiao, X., Chen, J., Wang, H., Tan, F., & Li, S. (2006). A novel chemical route to prepare ZnO nanoparticles. Materials Letters, 60, 1828–1832.

    Article  Google Scholar 

  24. Sangeetha, G., Rajeshwari, S., & Venckatesh, R. (2011). Green synthesis of zinc oxide nanoparticles by Aloe barbadensis miller leaf extract: structure and optical properties. Materials Research Bulletin, 46, 2560–2566.

    Article  Google Scholar 

  25. Patel, V. K., & Bhattacharya, S. (2013). High-performance nanothermite composites based on Aloe-vera-directed CuO nanorods. ACS Applied Materials & Interfaces, 5, 13364–13374.

    Article  Google Scholar 

  26. Bala, N., Saha, S., Chakraborty, M., Maiti, M., Das, S., Basu, R., & Nandy, P. (2015). Green synthesis of zinc oxide nanoparticles using Hibiscus sabdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Advances, 5, 4993–5003.

    Article  Google Scholar 

  27. Harborne, J. B. (1973). Methods of plant analysis. In Phytochemical Methods (pp. 1‒32). London: Chapman and Hall.

  28. Wagner, H., Bladt, S., & Zgainski, E. M. (1984). Plant drug analysis (pp. 298–334). Berlin: Springer-Verlag.

    Book  Google Scholar 

  29. Kokate, C. K. (1994). Practical pharmacognosy (4th ed.pp. 107–111). Delhi: Vallabh Prakashan.

    Google Scholar 

  30. Dilaveez, R., Mahendiran, D., Kumar, R. S., & Rahiman, A. K. (2017). In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bioprocess and Biosystems Engineering, 40, 943‒957.

  31. Ahmad, I., & Beg, A. J. (2001). Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. Journal of Ethnopharmacology, 74, 113–123.

    Article  Google Scholar 

  32. Re, R., Pellegrini, M., Proteggente, A., Pannala, A., Yang, M., & Rice, E. C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26, 1231–1237.

    Article  Google Scholar 

  33. Huong, N. T. T., Malsumato, K., Kasai, R., Yamasaki, K., & Watanabeth, H. (1998). In vitro antioxidant activity of Vietnamese ginseng saponin and its components. Biological and Pharmaceutical Bulletin, 21, 978–981.

    Article  Google Scholar 

  34. Elizabeth, K., & Rao, M. N. A. (1990). Oxygen radical scavenging activity of curcumin. International Journal of Pharmaceutics, 58, 237–240.

    Article  Google Scholar 

  35. Jayaprakasha, G. K., Rao, L. J., & Sakariah, K. K. (2004). Antioxidant activities of flavidin in different in vitro model systems. Bioorganic & Medicinal Chemistry, 12, 5141–5146.

    Article  Google Scholar 

  36. Rehana, D., Haleel, A., & Rahiman, A. K. (2015). Hydroxy, carboxylic and amino acid functionalized superparamagnetic iron oxide nanoparticles: synthesis, characterization and in vitro anti-cancer studies. Journal of Chemical Sciences, 127, 1155–1166.

    Article  Google Scholar 

  37. Mahendiran, D., Kumar, R. S., Viswanathan, V., Velmurugan, D., & Rahiman, A. K. (2016). Targeting of DNA molecules, BSA/c-Met tyrosine kinase receptors and anti-proliferative activity of bis(terpyridine) copper(II) complexes. Dalton Transactions, 45, 7794–7814.

    Article  Google Scholar 

  38. Taukoorah, U., & Mahomoodally, M. F. (2016). Crude Aloe vera gel shows antioxidant propensities and inhibits pancreatic lipase and glucose movement in vitro. Advances in Pharmacological Sciences. doi:10.1155/2016/3720850.

  39. Mungole, A., & Chaturvedi, A. (2011). Hibiscus sabdariffa L rich source of secondary metabolites. International Journal of Pharmaceutical Sciences Review and Research, 6, 83–87.

    Google Scholar 

  40. Basavaraja, S., Balaji, S. D., Lagashetty, A., Rajasab, A. H., & Venkataraman, A. (2008). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Materials Research Bulletin, 43, 1164–1170.

    Article  Google Scholar 

  41. Elumalai, K., Velmurugan, S., Ravi, S., Kathiravan, V., & Ashokkumar, S. (2015). Bio-fabrication of zinc oxide nanoparticles using leaf extract of curry leaf (Murraya koenigii) and its antimicrobial activities. Materials Science in Semiconductor Processing, 34, 365–372.

    Article  Google Scholar 

  42. Jayaseelan, C., Rahuman, A. A., Kirthi, A. V., Marimuthu, S., Kumar, T. S., Bagavan, A., Gaurav, K., Karthik, L., & Rao, K. V. B. (2012). Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica Acta Part A: Molecular Spectroscopy, 90, 78–84.

    Article  Google Scholar 

  43. Elumalai, K., Velmurugan, S., Ravi, S., Kathiravan, V., & Ashokkumar, S. (2015). Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity. Spectrochimica Acta Part A: Molecular Spectroscopy, 143, 158–164.

    Article  Google Scholar 

  44. Shanker, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275, 496–502.

    Article  Google Scholar 

  45. Zak, A. K., Majid, W. H. A., Mahmoudian, M. R., Darroudi, M., & Yousefi, R. (2013). Starchstabilized synthesis of ZnO nanopowders at low temperature and optical properties study. Advanced Powder Technology, 24, 618–624.

    Article  Google Scholar 

  46. Tidjani-Rahmounia, N., el Houda Bensiradjb, N., Djebbara, S., & Benali-Baiticha, O. (2014). Synthesis, characterization, electrochemical studies and DFT calculations of amino acids ternary complexes of copper(II) with isonitrosoacetophenone. Biological activities. Journal of Molecular Structure, 1075, 254–263.

    Article  Google Scholar 

  47. Nagarajan, S., & Kuppusamy, K. A. (2013). Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India. Journal of Nanobiotechnology, 39, 1–11.

    Google Scholar 

  48. Prasad, V., Souza, C. D., Yadav, D., Shaikh, A. J., & Vigneshwaran, N. (2006). Spectroscopic characterization of zinc oxide nanorods synthesized by solid-state reaction. Spectrochimica Acta Part A: Molecular Spectroscopy, 65, 173–178.

    Article  Google Scholar 

  49. Xia, T., Kovochich, M., & Nel, A. E. (2007). Impairment of mitochondrial function by particulate matter (PM) and their toxic components: implications for PM-induced cardiovascular and lung disease. Frontiers in Bioscience, 12, 1238–1246.

    Article  Google Scholar 

  50. Zhang, H., Lu, X., Li, Y., Wang, Y., & Li, J. (2009). P25-graphene composite as a high performance photocatalyst. ACS Nano, 4, 380–386.

    Article  Google Scholar 

  51. Mishra, A. N., Bhadauria, S., Gaur, M. S., Pasricha, R., & Kushwah, B. S. (2010). Synthesis of gold nanoparticles by leaves of zero-calorie sweetener herb (Stevia rebaudiana) and their nanoscopic characterization by spectroscopy and microscopy. International Journal of Green Nanotechnology: Physics and Chemistry, 1, 118–124.

    Article  Google Scholar 

  52. Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M. F., & Fiévet, F. (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters, 6, 866–870.

    Article  Google Scholar 

  53. Oberdörster, G., Oberdörster, E., & Oberdörster, J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113, 823–839.

    Article  MATH  Google Scholar 

  54. Chung, Y. C., Su, Y. P., & Chen, C. C. (2004). Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacologica Sinica, 25, 932–936.

    Google Scholar 

  55. Sundrarajan, M., Ambika, S., & Bharathi, K. (2015). Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Advanced Powder Technology, 26, 1294–1299.

    Article  Google Scholar 

  56. Elumalai, K., Velmurugan, S., Ravi, S., Kathiravan, V., & Adaikala Raj, G. (2015). Bio-approach: plant mediated synthesis of ZnO nanoparticles and their catalytic reduction of methylene blue and antimicrobial activity. Applied Surface Science, 26, 1639–1651.

    Google Scholar 

  57. Elumalai, K., & Velmurugan, S. (2015). Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.) Applied Surface Science, 345, 329–336.

    Article  Google Scholar 

  58. Raghupathi, K. R., Koodali, R. T., & Manna, A. C. (2011). Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 27, 4020–4028.

    Article  Google Scholar 

  59. Shinde, V. V., Dalavi, D. S., Mali, S. S., Hong, C. K., Kim, J. H., & Patil, P. S. (2014). Surfactant free microwave assisted synthesis of ZnO microspheres: Study of their antibacterial activity. Applied Surface Science, 307, 495–502.

    Article  Google Scholar 

  60. Geissman, T. A. (1963). Flavonoid compounds, tannins, lignins and related compounds. In M. Florkin & E. H. Stotz (Eds.), Pyrrole pigments, isoprenoid compounds and phenolic plant constituents (Vol. 9, p. 265). New York: Elsevier.

    Chapter  Google Scholar 

  61. Just, M. J., Recio, M. C., Giner, R. M., Cueller, M. U., Manez, S., Billia, A. R., & Rios, J. L. (1998). Antiinflammatory activity of unusual lupine saponins from Bupleurum fruticescens. Planta Medica, 64, 404–407.

    Article  Google Scholar 

  62. Dulger, C. B., Ergul, C., & Gucin, F. (2002). Antibacterial activity of the macrofungus lepista nuda. Fitoterapia, 73, 695–697.

    Article  Google Scholar 

  63. Nenadis, N., Wang, L., Tsimidou, M., & Zhang, H. (2004). Estimation of scavenging activity of phenolic compounds using the ABTS•+ assay. Journal of Agricultural and Food Chemistry, 52, 4669–4674.

    Article  Google Scholar 

  64. Pandurangan, M., Enkhtaivan, G., & Kim, D. H. (2016). Anticancer studies of synthesized ZnO nanoparticles against human cervical carcinoma cells. Journal of Photochemistry and Photobiology B: Biology, 158, 206–211.

    Article  Google Scholar 

  65. Shakir, M., Faraz, M., Sherwani, A., & Al-Resayes, S. I. (2016). Photocatalytic degradation of the paracetamol drug using lanthanum doped ZnO nanoparticles and their in vitro cytotoxicity assay. Journal of Luminescence, 176, 159–167.

    Article  Google Scholar 

  66. Chou, C. C., Yang, J. S., Lu, H. S., Ip, S. W., Lo, C., Wu, C. C., Lin, J. P., Tang, N. Y., Chung, J. G., Chou, M. J., Teng, Y. H., & Chen, D. R. (2010). Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells. Archives of Pharmacal Research, 33, 1181–1191.

    Article  Google Scholar 

  67. Mitra, K., Basu, U., Khan, I., Maity, B., Kondaiah, P., & Chakravarty, A. R. (2014). Remarkable anticancer activity of ferrocenyl-terpyridine platinum(II) complexes in visible light with low dark toxicity. Dalton Transactions, 43, 751–763.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. P. Perinbam and Mr. M. Ravikumar, Post-Graduate and Research Department of Botany, Government Arts College for Men (Autonomous), Nandanam, Chennai, 600035, for antibacterial studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kalilur Rahiman.

Electronic supplementary material

ESM 1

(DOCX 4082 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahendiran, D., Subash, G., Arumai Selvan, D. et al. Biosynthesis of Zinc Oxide Nanoparticles Using Plant Extracts of Aloe vera and Hibiscus sabdariffa: Phytochemical, Antibacterial, Antioxidant and Anti-proliferative Studies. BioNanoSci. 7, 530–545 (2017). https://doi.org/10.1007/s12668-017-0418-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-017-0418-y

Keywords

Navigation