Skip to main content

Advertisement

Log in

Green synthesis of zinc oxide nanoparticles using the root hair extract of Phoenix dactylifera: antimicrobial and anticancer activity

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Zinc oxide nanoparticles (ZnO NPs) were produced using the root hair extract of Phoenix dactylifera, and characterized by UV–Vis absorbance spectrophotometer, X-ray diffraction, particle size analyzer, and Fourier-transform infrared spectroscopy. Their antimicrobial activity and anticancer cytotoxicity were studied. An optimal nano-size range of 30.87–47.89 nm was obtained using 0.6 M of dihydrating zinc acetate salt and the root hair extract in a ratio of 1:2, respectively. ZnO NPs were observed to be around 45% more cytotoxic than doxorubicin (DOX) alone. Particularly, triple-negative breast cancer (TNBC) cells were observed to be more vulnerable to ZnO NPs than DOX alone which significantly reduced the viability of cancer cells to 9.01%. In addition, ZnO NPs were noticed to be 82.26% cytotoxic to lung cancer cells (A549). While testing ZnO powder did not cause any cytotoxicity on cancerous cells. Moreover, ZnO NPs showed promising antibacterial activity against different pathogenic organisms including Klebsiella pneumonia, Pseudomonas aeruginosa, Escherichia coli, Salmonella, and Staphylococcus aureus. Their activity was higher than the penicillin, gentamycin, and tetracycline based on the microbial inhibition zone. Generally, ZnO NPs demonstrate great potential for the chemotherapy of breast and lung cancer cells and bacterial infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abraham SD, David ST, Bennie RB, Joel C, Kumar DS (2016) Eco-friendly and green synthesis of BiVO4 nanoparticle using microwave irradiation as photocatalayst for the degradation of Alizarin Red S. J Mol Struct 1113:174–181

    Article  CAS  Google Scholar 

  • Akhtar MJ, Ahamed M, Kumar S, Khan M, Ahmad J, Alrokayan SA (2012) Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int J Nanomed 7:845–857. https://doi.org/10.2147/IJN.S29129

    Article  CAS  Google Scholar 

  • Alamdari S, Sasani Ghamsari M, Lee C, Han W, Park H, Tafreshi MJ, Afarideh H, Ara MHM (2020) Preparation and characterization of zinc oxide nanoparticles using leaf extract of Sambucus ebulus. Appl Sci 10:3620

    Article  CAS  Google Scholar 

  • Al-daihan S, Bhat R (2014) Antibacterial activities of extracts of leaf, fruit, seed, and bark of Phoenix dactylifera. Afr J Biotechnol 11(42):10021–10025

    Google Scholar 

  • Ayliffe GA (1965) Cephalosporinase and penicillinase activity of Gram-negative bacteria. J Gen Microbiol 40(1):119–126

    Article  CAS  Google Scholar 

  • Barani D, Benhaoua B, Laouini SE, Bentemam H, Allag N, Berra D, Guerram A (2019) Green synthesis of ZnO NPs using Phoenix dactylifera. L leaf extract: effect of zinc acetate concentration on the type of product. Dig J Nanomater Bios 14(3):581–591

    Google Scholar 

  • Chao CT, Krueger RR (2007) The date palm (Phoenix dactylifera): overview of biology, uses, and cultivation. Hortsci 42:1077–1082

    Article  Google Scholar 

  • El Hadrami A, Daayf F, El Hadrami I (2011) Date palm genetics and breeding. Date Palm Biotechnol. https://doi.org/10.1007/978-94-007-1318-5_23

    Article  Google Scholar 

  • Fakhari S, Jamzad M, Fard HK (2019) Green synthesis of ZnO NPs: a comparison. Green Chem Lett Rev 12(1):19–24. https://doi.org/10.1080/17518253.2018

    Article  CAS  Google Scholar 

  • Farhadi S, Ajerloo B, Mohammadi A (2017) Green biosynthesis of spherical silver NPs by using date palm (Phoenix dactylifera) fruit extract and study of their antibacterial and catalytic activities. Acta Chim Slov 64:129–143

    Article  CAS  Google Scholar 

  • Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, Parks WP (1973) In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst 51(5):1417–1423. https://doi.org/10.1093/jnci/51.5.1417.PMID4357758

    Article  CAS  Google Scholar 

  • Gunalan S, Sivaraj R, Rajendran V (2012) Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci Mater Int 22(6):693–700. https://doi.org/10.1016/j.pnsc.2012.11.015

    Article  Google Scholar 

  • Howlader N, Noone AM, Krapcho M, Miller D, Brest A, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (2019) SEER Cancer Statistics Review, 1975–2016, National Cancer Institute. Bethesda, MD, https://seer.cancer.gov/csr/1975_2017/

  • Husen A, Siddiqi KS (2014) Photosynthesis of nanoparticles: concept, controversy, and application. Nano Res Lett 9:229

    Article  Google Scholar 

  • Jamdagni P, Khatri P, Rana J (2018) Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J King Saud University-Sci 30(2):168–175

    Article  Google Scholar 

  • Jayarambabu N, Siva Kumari B, Venkateswara Rao K, Prabhu YT (2014) Germination and growth characteristics of mungbean seeds (Vigna radiata L.) affected by synthesized zinc oxide nanoparticles. Int J Curr Eng Technol 4(5):3411–3416

    Google Scholar 

  • Khatami M, Pourseyedi S (2015) Phoenix dactylifera (date palm) pit aqueous extract mediated novel route for synthesis, high stable silver NPs with high antifungal and antibacterial activity. IET Nanobiotechnol 9:184–190

    Article  Google Scholar 

  • Kim JH, Choi WC, Kim HY, Kang Y, Park YK (2005) Preparation of mono-dispersed mixed metal oxide micro hollow spheres by homogeneous precipitation in a micro precipitator. Powder Technol 153(3):166

    Article  CAS  Google Scholar 

  • Lee JA, Kang CI, Joo EJ, Ha YE, Kang SJ, Park SY, Chung DR, Peck KR, Ko KS, Lee NY, Song JH (2011) Epidemiology and clinical features of community-onset bacteremia caused by extended-spectrum beta-lactamase-producing Klebsiella pneumoniae. Microbial drug resistance (Larchmont, NY) 17:267–273. https://doi.org/10.1089/mdr.2010.0134

    Article  Google Scholar 

  • McCormick EG, Goh X, Xu PG (2014) Effect of particle size on the UV absorbance of zinc oxide nanoparticles. Scripta Mater 78–79:49–52

    Google Scholar 

  • Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B (2017) Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discovery Today 22(12):1825–1834

    Article  CAS  Google Scholar 

  • Naseer M, Aslam U, Khalid B, Chen B (2020) Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Sci Rep. https://doi.org/10.1038/s41598-020-65949-3

    Article  Google Scholar 

  • Ogunyemia S, Abdallaha Y, Zhanga M, Fouad H, Honga X, Ibrahima E, Masuma MI, Hossaina A, Moc J, Li B (2019) Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. Oryzae. Artif cells Nanomed Biotechnol 47(1):341–352. https://doi.org/10.1080/21691401.2018.1557671

    Article  CAS  Google Scholar 

  • Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress, and cell death. Apoptosis 12:913–922

    Article  CAS  Google Scholar 

  • Oves M, Aslam M, Rauf MA, Qayyum S, Qari HA, Khan MS, Alam MZ, Tabrez S, Pugazhendhi A, Ismail IMI (2018) Antimicrobial and anticancer activities of silver NPs synthesized from the root hair extract of Phoenix dactylifera. Mater Sci Eng C Mater Biol Appl 89:429–443. https://doi.org/10.1016/j.msec.2018.03.035

    Article  CAS  Google Scholar 

  • Papich MG (2002) Handbook of veterinary drugs, Philadelphia, Saunders. https://doi.org/https://doi.org/10.1016/B978-1-4557-0717-1.00020-X

  • Park JY, Yun YS, Hong YS, Oh H, Kim J, Kim S (2005) Synthesis Synthesis, electrical and photoresponse properties of vertically well-aligned and epitaxial ZnO nanorods on GaN-buffered sapphire substrates. Appl Phys Lett 87(12):123108

    Article  Google Scholar 

  • Pragati P, Poonam J, Khatri JSR (2016) Green synthesis of ZnO NPs using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J King Saud University Sci 30(2):168–175. https://doi.org/10.1016/j.jksus.2016.10.002

    Article  Google Scholar 

  • Raja A, Ashokkumar S, Marthandam PR, Jayachandiran J, Kathiwada CP, Rajendran GR, Swaminathan M (2017) Eco-friendly preparation of ZnO NPs using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. J Photochem Photobiol, B. https://doi.org/10.1016/j.jphotobiol.2018.02.011

    Article  Google Scholar 

  • Rashid M, Mujawar L, Rehan Z, Qari H, Zeb J, Almeelbi T, Ismail I (2016) One-step synthesis of silver NPs using Phoenix dactylifera leaves extract and their enhanced bactericidal activity. J Mol Liq 223:1114–1122

    Article  CAS  Google Scholar 

  • Sawai J, Kawada E, Kanou F, Igarashi H, Hashimoto A, Kokugan T, Shimizu M (1996) Detection of active oxygen generated from ceramic powders having antibacterial activity. J Chem Eng Jpn 29:627–633

    Article  CAS  Google Scholar 

  • Selim YA, Azb MA, Ragab I, Abd El-Azim MH (2020) Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. Sci Rep 10:3445. https://doi.org/10.1038/s41598-020-60541-1

    Article  CAS  Google Scholar 

  • Siddiqi KS, Rahman A, Tajuddin HA (2018) Properties of ZnO NPs and their activity against microbes. Nanoscale Res Lett 13:141. https://doi.org/10.1186/s11671-018-2532-3

    Article  CAS  Google Scholar 

  • Sierra MJ, Herrera AP, Karina A, Ojeda KA (2018) Synthesis of ZnO NPs from Mango and Soursop leaf extracts. Contemporary Eng Sci 11(8):395–403

    Article  CAS  Google Scholar 

  • Sofowora A (1993) Screening plants for bioactive agents. In: Medicinal plants and traditional medicinal in Africa. 2nd edn. Nigeria: Spectrum books Ltd, Ibadan, pp 134–156

  • Sohail MF, Rehman M, Hussain SZ, Huma Z, Shahnaz G, Qureshi OS, Khalid Q, Mirza S, Hussain I, Webster TJ (2020) Green synthesis of zinc oxide nanoparticles by Neem extract as multi-facet therapeutic agents. J Drug Delivery Sci Technol 59:101911

    Article  CAS  Google Scholar 

  • Sonker RK, Sabhajeet S, Singh S, Yadav B (2015) Synthesis of ZnO nanopetals and its application as NO2 gas sensor. Mater Lett 152:189–191

    Article  CAS  Google Scholar 

  • Strateva T, Yordanov D (2009) Pseudomonas aeruginosa—a phenomenon of bacterial resistance. J Med Microbiol 58(Pt 9):1133–1148

    Article  CAS  Google Scholar 

  • Tani T, Mädler L, Pratsinis SE (2002) Homogeneous ZnO nanoparticles by flame spray pyrolysis. J NP Res 4(4):337

    CAS  Google Scholar 

  • Thema FT, Manikandan E, Dhlamini MS, Maaza M (2015) Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract. Mater Lett 161:124–127. https://doi.org/10.1016/j.matlet.2015.08.052

    Article  CAS  Google Scholar 

  • Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, Altman RB (2011) Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics 21(7):440–446. https://doi.org/10.1097/FPC.0b013e32833ffb56

    Article  CAS  Google Scholar 

  • Wang M, Thanou M (2010) Targeting nanoparticles to cancer. Pharmacol Res 62:90–99

    Article  CAS  Google Scholar 

  • Wang MH, Ma X, Zhou F (2015) Synthesis and characterization of monodispersed spherical ZnO nanocrystals in an aqueous solution. Mater Lett 142:64–66

    Article  CAS  Google Scholar 

  • Yamamoto O, Komatsu M, Sawai J, Nakagawa ZE (2004) Effect of lattice constant of zinc oxide on antibacterial characteristics. J Mater Sci Mater Med 15:847–851

    Article  CAS  Google Scholar 

  • Yedurkar S, Maurya C, Mahanwar P (2016) Biosynthesis of zinc oxide nanoparticles using ixora coccinea leaf extract—a green approach. Open J Synthesis Theory Appl 5:1–14. https://doi.org/10.4236/ojsta.2016.51001

    Article  CAS  Google Scholar 

  • Yip NC, Fombon IS, Liu P, Brown S, Kannappan V, Armesilla AL, Xu B, Cassidy J, Darling JL, Wang W (2011) Disulfiram modulated ROS-MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties. British J Cancer 104:1564–1574

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Al-Ahliyya Amman University for the financial support. This research was funded by the Deanship of Graduate Studies at AL-Ahliyya Amman University through its council number 14/6/2019-2020.

Funding

This research was funded by the Deanship of Graduate Studies at AL-Ahliyya Amman University through its council number 14/6/2019-2020.

Author information

Authors and Affiliations

Authors

Contributions

RAH and EAK designed the project; RN, MA and AA performed the experiments; RAH supervised the project; RN wrote the original draft; RAH, EAK, MA, and AA edited & reviewed the manuscript.

Corresponding author

Correspondence to Rana Abu-Huwaij.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. The absorbance at the wavelength (λ = 590 nm) of the treated and no-treated cancerous cells (A549) using ELx800 Absorbance Microplate Reader with their average and standard deviation of each treatment.

Treatment

1

2

3

4

5

6

7

8

9

10

Avg

SD

Fresh ZnO NPs

0.388

0.385

0.387

0.394

0.315

0.375

0.356

0.368

0.396

0.324

0.369

0.0288

Old ZnO NPs

0.373

0.4

0.35

0.359

0.316

0.476

0.384

0.363

0.354

0.316

0.369

0.0459

Plant extract

1.127

1.245

1.1

1.183

1.296

0.999

1.232

1.291

1.244

1.120

1.184

0.0956

DOX

0.794

0.805

0.843

       

0.814

0.0257

ZnO powder

2.366

2.409

2.395

       

2.39

0.0219

DMSO

1.152

1.234

1.045

       

1.144

0.0948

Media alone

0.111

0.195

0.11

       

0.139

0.0488

Media and non treated cells

1.485

1.437

1.47

1.53

1.381

1.372

1.577

1.472

1.414

1.421

1.456

0.0645

Appendix 2. The absorbance at the wavelength (λ = 590 nm) of treated and non-treated cancerous cells (TNBC) using ELx800 Absorbance Microplate Reader with their average and standard deviation of each treatment

Treatment

1

2

3

4

5

6

7

8

9

10

Avg

SD

Fresh ZnO NPs

0.261

0.234

0.395

0.225

0.382

0.3

0.343

0.239

0.309

0.343

0.303

0.0454

Old ZnO NPs

0.292

0.294

0.282

0.292

0.332

0.285

0.306

0.295

0.292

0.297

0.297

0.014

Plant extract

1.024

1.301

1.143

1.216

1.181

1.149

1.053

1.097

1.047

1.170

1.138

0.0855

DOX

0.617

0.856

0.841

       

0.771

0.1339

ZnO powder

1.994

2.447

2.274

       

2.238

0.2286

DMSO

1.231

1.231

1.293

       

1.252

0.0358

Media alone

0.185

0.215

0.189

       

0.196

0.0163

Media and non-treated cells

1.089

1.311

1.354

1.386

1.256

1.383

1.293

1.176

1.262

1.197

1.271

0.0958

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naser, R., Abu-Huwaij, R., Al-khateeb, I. et al. Green synthesis of zinc oxide nanoparticles using the root hair extract of Phoenix dactylifera: antimicrobial and anticancer activity. Appl Nanosci 11, 1747–1757 (2021). https://doi.org/10.1007/s13204-021-01837-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-021-01837-0

Keywords

Navigation