Skip to main content

Advertisement

Log in

A Review and Taxonomy of Activity Recognition on Mobile Phones

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The release of smart phones equipped with a rich set of sensors has enabled human activity recognition on mobile platforms. Monitoring the daily activities and their levels helps in recognizing the health and wellness of the users as a practical application. Mobile phone’s ubiquity, unobtrusiveness, ease of use, communication channels, and playfulness make mobile phones a suitable platform also for inducing behavior change for a healthier and more active lifestyle. In this paper, we provide a review on the activity recognition systems that use integrated sensors in the mobile phone with a special focus on the systems that target personal health and well-being applications. Initially, we provide background information about the activity recognition process, such as the sensors used, activities targeted, and the steps of activity recognition using machine learning algorithms, before listing the challenges of activity recognition on mobile phones. Next, we focus on the classification of existing work on the topic together with a detailed taxonomy. Finally, we investigate the directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. We admit that camera-based systems are more powerful in detecting a more detailed context for the user, and phone-based activity recognition may not replace the camera-based solutions in settings where each action is required to be detected. Here, our consideration is about the set of the activities that can be detected with the set of sensors available on the phones, and the camera still can be used for detailed context recognition.

  2. Although activity recognition can be performed using rule-based inference or using unsupervised techniques, it can be very challenging to discriminate activities in this context [54].

References

  1. Pulse phone: smart-phone app tracks heart rate. http://www.technologyreview.com/news/425758/smart-phone-app-tracks-heart-rate/. Accessed May 2013.

  2. Weka machine learning toolkit. http://www.cs.waikato.ac.nz/ml/index.html. Accessed May 2013.

  3. Zeo sleep manager (2012). http://www.myzeo.com/sleep/. Accessed May 2013.

  4. Sleepcycle (2013). A bio-alarmclock. http://www.sleepcycle.com/. Accessed May 2013.

  5. Mohd Fikri Azli bin Abdullah, Ali Fahmi Perwira Negara, Shosel Sayeed, Deok-Jai Choi, Kalaiarasi Sonai Muthu (2012). Classification algorithms in human activity recognition using smartphones. World Academy of Science, Engineering and Technology, 68, 422–430.

    Google Scholar 

  6. Ahtinen, A., Huuskonen, P., Häkkilä, J. (2010). Let’s all get up and walk to the north pole: design and evaluation of a mobile wellness application. In Proceedings of the 6th Nordic conference on human-computer interaction: extending boundaries, NordiCHI ’10 (pp. 3–12). New York: ACM.

    Chapter  Google Scholar 

  7. Alqassim, S., Ganesh, M., Khoja, S., Zaidi, M., Aloul, F., Sagahyroon, A. (2012). Sleep apnea monitoring using mobile phones. In e-Health networking, applications and services (Healthcom), 2012 IEEE 14th International Conference on (pp. 443–446).

  8. Alvarez, G.G., & Ayas, N.T. (2004). The impact of daily sleep duration on health: a review of the literature. Progress in Cardiovascular Nursing, 19(2), 56–59.

    Article  Google Scholar 

  9. Ananthanarayan, S., & Siek, K. (2012). Persuasive wearable technology design for health and wellness. In Pervasive Computing Technologies for Healthcare (PervasiveHealth), 2012 6th International Conference on (pp. 236–240).

  10. Anderson, I., Maitland, J., Sherwood, S., Barkhuus, L., Chalmers, M., Hall, M., Brown, B., Muller, H. (2007). Shakra: tracking and sharing daily activity levels with unaugmented mobile phones. Mobile Networks and Applications, 12(2–3), 185–199.

    Article  Google Scholar 

  11. Arase, Y., Ren, F., Xie, X. (2010). User activity understanding from mobile phone sensors. In Ubicomp ’10: Proceedings of the 12th ACM international conference adjunct papers on ubiquitous computing (pp. 391–392). New York: ACM.

    Chapter  Google Scholar 

  12. Arteaga, S. (2010). Persuasive mobile exercise companion for teenagers with weight management issues. SIGACCESS Access. Accessibility and Computing, 96, 4–10.

    Article  Google Scholar 

  13. Avci, A., Bosch, S., Marin-Perianu, M., Marin-Perianu, R., Havinga, P. (2010). Activity recognition using inertial sensing for healthcare, wellbeing and sports applications: a survey. In 23th International Conference on Architecture of Computing Systems, ARCS 2010 pp. 167–176.

  14. Steele, B.G., Belza, B., Cain, K., Warms, C., Coppersmith, J., Howard, J. (2003). Bodies in motion: monitoring daily activity and exercise with motion sensors in people with chronic pulmonary disease. Rehabilitation Research and Development, 40(5), 404–412

    Google Scholar 

  15. Bao, L., & Intille, S.S. (2004). Activity recognition from user-annotated acceleration data. In Proceedings of Pervasive Conference pp. 1–17.

  16. Berchtold, M., Budde, M., Gordon, D., Schmidtke, H., Beigl, M. (2010). Actiserv: activity recognition service for mobile phones. In 2010 International symposium on wearable computers (ISWC) pp. 1–8. doi:10.1109/ISWC.2010.5665868.

  17. Bieber, G., Koldrack, P., Sablowski, C., Peter, C., Urban, B. (2010). Mobile physical activity recognition of stand-up and sit-down transitions for user behavior analysis. In Proceedings of the 3rd international conference on pervasive technologies related to assistive environments, PETRA ’10, (Vol. 50, p. 5). New York: ACM. doi:10.1145/18392941839354.

    Google Scholar 

  18. Bishop, C.M. (2006). Pattern recognition and machine learning (information science and statistics). New York: Springer.

    Google Scholar 

  19. Blanke, U., Larlus, D., Laerhoven, K., Schiele, B. (2010). Standing on the shoulders of other researchers—a position statement. In Pervasive workshop—how to do good activity recognition research? Experimental methodologies, evaluation metrics and reproducibility issues. Helsinki, Finland.

  20. Cai, L., & Chen, H. (2011). TouchLogger: inferring keystrokes on touch screen from smartphone motion. In Proceedings of the 6th USENIX conference on hot topics in security, HotSec’11 (pp. 9–9). USENIX Association Berkeley.

  21. Choudhury, T., Consolvo, S., Harrison, B., Hightower, J., LaMarca, A., LeGrand, L., Rahimi, A., Rea A., Bordello, G., Hemingway, B., Klasnja, P., Koscher, K., Landay, J., Lester, J., Wyatt, D., Haehnel D. (2008). The mobile sensing platform: an embedded activity recognition system. Pervasive Computing, IEEE , 7(2), 32–41.

    Article  Google Scholar 

  22. Choujaa, D., & Dulay, N. (2008). Tracme: temporal activity recognition using mobile phone data. In EUC ’08: Proceedings of the 2008 IEEE/IFIP International conference on embedded and ubiquitous computing. IEEE Computer Society.

  23. Choujaa, D., & Dulay, N. (2010). Activity recognition using mobile phones: achievements, challenges and recommendations. In How to do good research in activity recognition: experimental methodology, performance evaluation and reproducibility. Workshop in conjunction with Pervasive 2010.

  24. Chu, D., Lane, N.D., Lai, T.T.T., Pang, C., Meng, X., Guo, Q., Li, F., Zhao, F. (2011). Balancing energy, latency and accuracy for mobile sensor data classification. In Proceedings of the 9th ACM conference on embedded networked sensor systems, SenSys ’11 (pp. 54–67). New York: ACM.

    Chapter  Google Scholar 

  25. Consolvo, S., McDonald, D.W., Toscos, T., Chen, M.Y., Froehlich, J., Harrison, B., Klasnja, P., LaMarca, A., LeGrand, L., Libby, R., Smith, I., Landay, J.A. (2008). Activity sensing in the wild: a field trial of ubifit garden (pp. 1797–1806). New York: ACM.

    Google Scholar 

  26. Dai, J., Bai, X., Yang, Z., Shen, Z., Xuan, D. (2010). Perfalld: a pervasive fall detection system using mobile phones. In PerCom workshops, pp. 292–297.

  27. Dantzig, S., Geleijnse, G., Halteren, A. (2012). Toward a persuasive mobile application to reduce sedentary behavior. Personal Ubiquitous Computing, 1–10. doi:10.1007/s00779-012-0588-0.

  28. De Cristofaro, E., Durussel, A., Aad, I. (2011). Reclaiming privacy for smartphone applications. In Proceedings of the 2011 IEEE international conference on pervasive computing and communications, PERCOM ’11 (pp. 84–92). Washington DC: IEEE Computer Society.

    Chapter  Google Scholar 

  29. Dernbach, S., Das, B., Krishnan, N.C., Thomas, B.L., Cook, D.J. (2012). Simple and complex activity recognition through smart phones. In Intelligent Environments (pp. 214–221).

  30. Eagle, N., & (Sandy) Pentland, A. (2006). Reality mining: sensing complex social systems. Personal Ubiquitous Computer, 10(4), 255–268.

    Article  Google Scholar 

  31. Fitz-Walter, Z., & Tjondronegoro, D. (2009). Simple classification of walking activities using commodity smart phones. In OZCHI ’09 Proceedings of the 21st annual conference of the australian computer-human interaction special interest group: design: open 24/7 (pp. 409–412).

  32. Fogg, B. (1998). Persuasive computers: perspectives and research directions. In Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’98 (pp. 225–232). New York: ACM/Addison-Wesley Publishing Co.

    Chapter  Google Scholar 

  33. Fogg, B. (2007). Mobile Persuasion: 20 perspectives on the future of behavior change. Stanford Captology Media.

  34. Fontecha, J., Navarro, F., Hervas, R., Bravo, J. (2012). Elderly frailty detection by using accelerometer-enabled smartphones and clinical information records. Personal and Ubiquitous Computing. doi:10.1007/s00779-012-0559-5.

  35. Garcia Wylie, C., & Coulton, P. (2009). Persuasive mobile health applications. In Electronic Healthcare. vol. 0001, (pp. 90–97). Berlin: Springer.

    Chapter  Google Scholar 

  36. Hariharan, R., Krumm, J., Horvitz, E. (2005). Web-enhanced GPS. In Proceedings of the first international conference on location- and context-awareness, LoCA’05 (pp. 95–104). Heidelberg: Springer.

    Chapter  Google Scholar 

  37. Henpraserttae, A., Thiemjarus, S., Marukatat, S. (2011). Accurate activity recognition using a mobile phone regardless of device orientation and location. In Proceedings of the 2011 international conference on body sensor networks, BSN ’11 (pp. 41–46). Washington DC: IEEE Computer Society.

    Chapter  Google Scholar 

  38. Hynes, M., Wang, H., Mccarrick, E., Kilmartin, L. (2011). Accurate monitoring of human physical activity levels for medical diagnosis and monitoring using off-the-shelf cellular handsets. Personal Ubiquitous Computer, 15(7), 667–678.

    Article  Google Scholar 

  39. Iso, T., & Yamazaki, K. (2006). Gait analyzer based on a cell phone with a single three-axis accelerometer. In Proceedings of the 8th conference on Human-computer interaction with mobile devices and services, MobileHCI ’06 (pp. 141–144). New York: ACM.

    Chapter  Google Scholar 

  40. Liu, J., Goraczko, M., Kansal, A., Lymberopoulos, D., Nath, S., Priyantha, B. (2010). Subjective sensing: mission statement and a research agenda. Technical Report.

  41. Ju, Y., Lee, Y., Yu, J., Min, C., Shin, I., Song, J. (2012). Symphoney: a coordinated sensing flow execution engine for concurrent mobile sensing applications. In Proceedings of the 10th ACM conference on embedded network sensor systems, SenSys ’12 (pp. 211–224). New York: ACM.

    Chapter  Google Scholar 

  42. Kaspar, R., Oswald, F., Wahl, H.W., Voss, E., Wettstein, M. (2012). Daily mood and out-of-home mobility in older adults: does cognitive impairment matter? Journal of Applied Gerontology. doi:10.1177/0733464812466290.

  43. van Kasteren, T., Alemdar, H., Ersoy, C. (2011). Effective performance metrics for evaluating activity recognition methods. In ARCS 2011 VDE.

  44. van Kasteren, T., Noulas, A., Englebienne, G., Kröse, B. (2008). Accurate activity recognition in a home setting. In Proceedings of the 10th international conference on Ubiquitous computing, UbiComp ’08 (pp. 1–9). New York: ACM.

    Chapter  Google Scholar 

  45. Kiukkonen, N.J.B., Dousse, O., Gatica-Perez, D. J. (2010). Towards rich mobile phone data sets: Lausanne data collection campaign. In Proceedings ACM International Conference on Pervasive Services (ICPS2010).

  46. Könönen, V., Mäntyjärvi, J., Similä, H., Pärkkä, J., Ermes, M. (2010). Automatic feature selection for context recognition in mobile devices. Pervasive and Mobile Computing , 6(2), 181–197.

    Article  Google Scholar 

  47. Kose, M. (2012). Performance evaluation of classification methods for online activity recognition on smart phones. Technical Report.

  48. Kose, M., Incel, O.D., Ersoy, C. (2012). Online human activity recognition on smart phones. Workshop on mobile sensing: from smartphones and wearables to big data (colocated with IPSN), 11–15.

  49. Krumm, J., & Horvitz, E. (2004). Locadio: inferring motion and location from Wi-Fi signal strengths. In MobiQuitous (pp. 4–13).

  50. Kwapisz, J.R., Weiss, G.M., Moore, S.A. (2011). Activity recognition using cell phone accelerometers. SIGKDD Explore Newsletter, 12(2), 74–82. doi:10.1145/1.9648971964918.

    Article  Google Scholar 

  51. Lane, N., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A. (2010). A survey of mobile phone sensing. IEEE Communications Magazine, 48(9), 140–150.

    Article  Google Scholar 

  52. Lane, N., Mohammod, M., Lin, M., Yang, X., Lu, H., Ali, S., Doryab, A., Berke, E., Choudhury, T., Campbell, A. (2012). Bewell: a smartphone application to monitor, model and promote wellbeing. IEEE. doi:10.4108/icst.pervasivehealth.2011.246161.

  53. Lane, N.D., Xu, Y., Lu, H., Hu, S., Choudhury, T., Campbell, A.T., Zhao, F. (2011). Enabling large-scale human activity inference on smartphones using community similarity networks (csn). In Proceedings of the 13th international conference on Ubiquitous computing, UbiComp ’11 (pp. 355–364). New York: ACM.

    Chapter  Google Scholar 

  54. Lara, O.D., & Labrador, M.A. (2012). A survey on human activity recognition using wearable sensors. Technical Report. http://www.cse.usf.edu/files/69521327941111Survey.pdf.

  55. Lee, Y.S., & Cho, S.B. (2011). Activity recognition using hierarchical hidden Markov models on a smartphone with 3d accelerometer. In Proceedings of the 6th international conference on hybrid artificial intelligent systems - Volume Part I, HAIS’11 (pp. 460–467). Heidelberg: Springer.

    Chapter  Google Scholar 

  56. Li, F., Zhao, C., Ding, G., Gong, J., Liu, C., Zhao, F. (2012). A reliable and accurate indoor localization method using phone inertial sensors. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, UbiComp ’12 (pp. 421–430). New York: ACM.

    Chapter  Google Scholar 

  57. Lockhart, J.W., Pulickal, T., Weiss, G.M. (2012). Applications of mobile activity recognition. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, UbiComp ’12 (pp. 1054–1058). New York: ACM.

    Chapter  Google Scholar 

  58. Longstaff, B., Reddy, S., Estrin, D. (2010). Improving activity classification for health applications on mobile devices using active and semi-supervised learning. In PervasiveHealth, (pp 1–7).

  59. Loseu, V., Ghasemzadeh, H., Ostadabbas, S., Raveendranathan, N., Malan, J., Jafari, R. (2010). Applications of sensing platforms with wearable computers. In Proceedings of the 3rd international conference on pervasive technologies related to assistive environments, PETRA ’10 (pp. 53:1–53:5). New York: ACM.

    Google Scholar 

  60. Lu, H., Yang, J., Liu, Z., Lane, N.D., Choudhury, T., Campbell, A.T. (2010). The jigsaw continuous sensing engine for mobile phone applications. In Proceedings of the 8th ACM conference on embedded networked sensor systems, SenSys ’10 (pp. 71–84). New York: ACM.

    Chapter  Google Scholar 

  61. Lukowicz, P., Pentland, A., Ferscha, A. (2012). From context awareness to socially interactive computing. IEEE Pervasive Computing 11(1), 32–41.

    Article  Google Scholar 

  62. Martin, H., Bernardos, A., Iglesias, J., Casar, J. (2012). Activity logging using lightweight classification techniques in mobile devices. Personal and Ubiquitous Computing, 17, 1–21.

    Google Scholar 

  63. Matic, A., Osmani, V., Maxhuni, A., Mayora, O. (2012). Multi-modal mobile sensing of social interactions. In Pervasive computing technologies for healthcare (PervasiveHealth), 2012 6th international conference on (pp. 105–114).

  64. Matic, A., Osmani, V., Mayora-Ibarra, O. (2012). Analysis of social interactions through mobile phones. Mobile Networks and Applications, 17, 808–819.

    Article  Google Scholar 

  65. Miluzzo, E., Cornelius, C.T., Ramaswamy, A., Choudhury, T., Liu, Z., Campbell, A.T. (2010). Darwin phones: the evolution of sensing and inference on mobile phones. In Proceedings of the 8th international conference on Mobile systems, applications, and services, MobiSys ’10 (pp. 5–20). New York: ACM.

    Google Scholar 

  66. Miluzzo, E., Lane, N.D., Fodor, K., Peterson, R., Lu, H., Musolesi, M., Eisenman, S.B., Zheng, X., Campbell, A.T. (2008). Sensing meets mobile social networks: the design, implementation and evaluation of the cenceme application. In Proceedings of the 6th ACM conference on Embedded network sensor systems, SenSys ’08 (pp. 337–350). New York: ACM.

    Chapter  Google Scholar 

  67. Miluzzo, E., Papandrea, M., Lane, N., Lu, H., Campbell, A. (2010). Pocket, bag, hand, etc.-automatically detecting phone context through discovery. In Proceedings of the first international workshop on sensing for app phones (PhoneSense10).

  68. Miluzzo, E., Varshavsky, A., Balakrishnan, S., Choudhury, R.R. (2012). Tapprints: your finger taps have fingerprints. In Proceedings of the 10th international conference on Mobile systems, applications, and services, MobiSys ’12 (pp. 323–336). New York: ACM.

    Chapter  Google Scholar 

  69. Miluzzo, E., Wang, T., Campbell, A.T. (2010). Eyephone: activating mobile phones with your eyes. In Proceedings of the second ACM SIGCOMM workshop on Networking, systems, and applications on mobile handhelds, MobiHeld ’10 (pp. 15–20). New York: ACM.

    Chapter  Google Scholar 

  70. Mladenov, M., & Mock, M. (2009). A step counter service for java-enabled devices using a built-in accelerometer. In Proceedings of the 1st international workshop on context-aware middleware and services: affiliated with the 4th international conference on communication system software and middleware (COMSWARE 2009), CAMS ’09 (pp. 1–5). New York: ACM.

    Chapter  Google Scholar 

  71. Mun, M., Estrin, D., Burke, J., Hansen, M. (2008). Parsimonious mobility classification using GSM and WIFI traces. In Proceedings of the 5th workshop on embedded networked sensors (HotEmNets).

  72. Natale, V., Drejak, M., Erbacci, A., Tonetti, L., Fabbri, M., Martoni, M. (2012). Monitoring sleep with a smartphone accelerometer. Sleep and Biological Rhythms, 10(4), 287–292.

    Article  Google Scholar 

  73. Park, J-g., Patel, A., Curtis, D., Ledlie, J., Teller, S. (2012). Online pose classification and walking speed estimation using handheld devices. In Proceedings 14th international conference on ubiquitous computing (UbiComp 2012) (pp.113–122).

  74. Park, K., Shin, H., Cha, H. (2013). Smartphone-based pedestrian tracking in indoor corridor environments. Personal and Ubiquitous Computing, 17, 359–370.

    Article  Google Scholar 

  75. Patrick, K., Griswold, W.G., Raab, F., Intille, S.S. (2008). Health and the mobile phone. American Journal of Preventive Medicine, 35(2), 177–181.

    Article  Google Scholar 

  76. Peebles, D., Lu H., Lane, N.D., Choudhury, T., Campbell A.T. (2010). Community-guided learning: exploiting mobile sensor users to model human behavior. In AAAI.

  77. Pentland, A. (2000). Looking at people: sensing for ubiquitous and wearable computing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 107–119.

    Article  Google Scholar 

  78. Pollak, J., Gay, G., Byrne, S., Wagner, E., Retelny, D., Humphreys, L. (2010). It’s time to eat! Using mobile games to promote healthy eating. Pervasive Computing, IEEE, 9(3), 21–27.

    Article  Google Scholar 

  79. Preece, S.J., Goulermas, J.Y., Kenney, L.P.J., Howard, D., Meijer, K., Crompton, R. (2009). Activity identification using body-mounted sensors: a review of classification techniques. Physiological Measurement, 30(4). R1.

    Google Scholar 

  80. Priyantha, B., Lymberopoulos, D., Liu, J. (2010). Enabling energy efficient continuous sensing on mobile phones with littlerock. In Proceedings of the 9th ACM/IEEE international conference on information processing in sensor networks, IPSN ’10 (pp. 420–421). New York: ACM.

    Chapter  Google Scholar 

  81. Purpura, S., Schwanda, V., Williams, K., Stubler, W., Sengers, P. (2011). Fit4life: the design of a persuasive technology promoting healthy behavior and ideal weight. In Proceedings of the 2011 annual conference on human factors in computing systems, CHI ’11 (pp. 423–432). New York: ACM.

    Chapter  Google Scholar 

  82. Rachuri, K.K., Mascolo, C., Musolesi, M., Rentfrow, P.J. (2011). Sociablesense: exploring the trade-offs of adaptive sampling and computation offloading for social sensing. In Proceedings of the 17th annual international conference on Mobile computing and networking, MobiCom ’11 (pp. 73–84). New York: ACM.

    Chapter  Google Scholar 

  83. Rachuri, K.K., Musolesi, M., Mascolo, C., Rentfrow, P.J., Longworth, C., Aucinas, A. (2010). Emotionsense: a mobile phones based adaptive platform for experimental social psychology research. In Proceedings of the 12th ACM international conference on Ubiquitous computing, Ubicomp ’10 (pp. 281–290). New York: ACM.

    Chapter  Google Scholar 

  84. Rai, A., Yan, Z., Chakraborty, D., Wijaya, T.K., Aberer, K. (2012). Mining complex activities in the wild via a single smartphone accelerometer. In Proceedings of the sixth international workshop on knowledge discovery from sensor data, SensorKDD ’12 (pp. 43–51). New York: ACM.

    Chapter  Google Scholar 

  85. Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., Srivastava, M. (2010). Using mobile phones to determine transportation modes. ACM Transactions on Sensor Networks, 6(2), 1–27.

    Article  Google Scholar 

  86. Roggen, D., Wirz, M., Tröster, G., Helbing, D. (2011). Recognition of crowd behavior from mobile sensors with pattern analysis and graph clustering methods. CoRR abs/1109.1664.

  87. Ryder, J., Longstaff, B., Reddy, S., Estrin, D. (2009). Ambulation: a tool for monitoring mobility patterns over time using mobile phones. In Proceedings of the 2009 international conference on computational science and engineering - Volume 04, CSE ’09 (pp. 927–931). Washington DC: IEEE Computer Society.

    Chapter  Google Scholar 

  88. Saponas, T.S., Lester, J., Froehlich, J., Fogarty, J., Landay, J. (2008). ilearn on the iphone: Real-time human activity classification on commodity mobile phones. Technical Report. UW-CSE-08-04–02.

  89. Serra, A., Carboni, D., Marotto, V. (2010). Indoor pedestrian navigation system using a modern smartphone. In Proceedings of the 12th international conference on Human computer interaction with mobile devices and services, MobileHCI ’10 (pp. 397–398). New York: ACM. doi:10.1145/18516001851683.

    Chapter  Google Scholar 

  90. Siek, K. (2012). Persuasive wearable technology design for health and wellness. In Proceedings of pervasive computing technologies for healthcare (PervasiveHealth), 2012 6th international conference on (pp. 236–240).

  91. Siirtola, P., & Röning, J. (2012). Recognizing human activities user-independently on smartphones based on accelerometer data. International Journal of Interactive Multimedia and Artificial Intelligence, 1(5), 38–45.

    Article  Google Scholar 

  92. Sohn, T., Varshavsky, A., Lamarca, A., Chen, M., Choudhury, T., Smith, I., Consolvo, S., Hightower, J., Griswold, W., de Lara E. (2006). Mobility detection using everyday gsm traces. In UbiComp 2006: Proceedings of the 8th international conference of ubiquitous computing (pp. 212–224).

  93. Torun, M., van Kasteren, T., Incel, O.D., Ersoy, C. (2012). Complexity versus page hierarchy of a GUI for elderly homecare applications. Lecture Notes in Computer Science, 7382, 689–696.

    Article  Google Scholar 

  94. Wang, Y., Lin, J., Annavaram, M., Jacobson, Q.A., Hong, J., Krishnamachari, B., Sadeh, N. (2009). A framework of energy efficient mobile sensing for automatic user state recognition. In Proceedings of the 7th international conference on Mobile systems, applications, and services, MobiSys ’09 (pp. 179–192). New York: ACM.

    Chapter  Google Scholar 

  95. Yan, Z., Chakraborty, D., Misra, A., Jeung, H., Aberer, K. (2012). Semantic activity classification using locomotive signatures from mobile phones. Technical Report.

  96. Yan, Z., Subbaraju, V., Chakraborty, D., Misra, A., Aberer, K. (2012). Energy-efficient continuous activity recognition on mobile phones: an activity-adaptive approach. In Proceedings of the 16th international symposium on wearable computers (ISWC).

  97. Yang, J. (2009). Toward physical activity diary: motion recognition using simple acceleration features with mobile phones. In Proceedings of the 1st international workshop on Interactive multimedia for consumer electronics IMCE ’09 (pp. 1–10).

  98. Yavuz, G., Kocak, M., Ergun, G., Alemdar, H.O., Yalcin, H., Incel, O.D., Ersoy, C. (2010). A smartphone based fall detector with online location support. In Proceedings of PhoneSense 2010.

  99. Young, M. (2010). Twitter me: using micro-blogging to motivate teenagers to exercise. In R. Winter, J. Zhao, S. Aier (Eds.), Global perspectives on design science research, Lecture Notes in Computer Science (Vol. 6105, pp. 439–448). New York: Springer.

    Google Scholar 

  100. Zhou, P., Zheng, Y., Li, Z., Li, M., Shen, G. (2012). Iodetector: a generic service for indoor outdoor detection. In Proceedings of the 10th acm conference on embedded network sensor systems, SenSys ’12 (pp. 361–362). New York: ACM.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozlem Durmaz Incel.

Additional information

This work is supported by the Turkish State Planning Organization (DPT) under the TAM Project number 2007K120610 and by Bogazici University Research Fund under grant agreement number “6056”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Incel, O.D., Kose, M. & Ersoy, C. A Review and Taxonomy of Activity Recognition on Mobile Phones. BioNanoSci. 3, 145–171 (2013). https://doi.org/10.1007/s12668-013-0088-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-013-0088-3

Keywords

Navigation