Skip to main content
Log in

Graphenic Nanoparticles from Combustion Sources Scavenge Hydroxyl Radicals Depending Upon Their Structure

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Graphenic nanomaterials like fullerenes, carbon nanotubes (CNT), and carbon black (CB) are known to scavenge free radicals. This antioxidant activity makes these materials promising in all applications where radical reactions need to be controlled. Therefore, CNT and fullerenes has been proposed as stabilising additives for composites and in medicine to prevent free-radicals-mediated diseases. CB has been used for more than a century as a stabilising filler in rubbers. The mechanisms responsible of the scavenging activity and the role of the nanoparticles structure in the antioxidant potency are still poorly known. In the present study, two samples of very pure soot having different structure were prepared as model of graphenic nanoparticles and tested for their capability to scavenge hydroxyl radicals by means of electron paramagnetic resonance (EPR)/spin trapping technique. The mechanism of the reactions occurring between the soot samples and the free radicals was evaluated by EPR spectroscopy of the dry powder while the possible introduction of oxygenated acidic functionalities during the reaction was evaluated by titration and confirmed by measuring the variation in ζ-potential of particles. The results indicate that soot persistently scavenge hydroxyl radicals through a reaction leading to the introduction of acidic functionalities at the surface. The scavenging activity was found to depend upon the bulk/surface structure of soot. When tested on alveolar macrophages MH-S cells, both samples did not induce cell damage (lactate dehydrogenase leakage) and oxidative stress (intracellular GSH depletion), suggesting a possible safe use of graphenic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Foucaud, L., Wilson, M. R., Brown, D. M., Stone, V. (2007). Measurement of reactive species production by nanoparticles prepared in biologically relevant media. Toxicology Letters, 174, 1–9.

    Article  Google Scholar 

  2. Oberdoster, G. (2001). Pulmonary effect of inhaled ultra fine particle. International Archives of Occupational and Environmental Health, 74, 1–8.

    Article  Google Scholar 

  3. Panessa-Warren, B. J., Warren, J. B., Wong, S. S., Misewich, J. A. (2006). Biological cellular response to carbon nanoparticle toxicity. Journal of Physics: Condensed Matter, 18, 2185–2201.

    Article  Google Scholar 

  4. Hayes, B. S. (1991). Soot and hydrocarbons in combustion. In W. Bartok A. F. Sarofim (Eds.), Fossil fuel combustion (pp. 261–327). New York: Wiley.

    Google Scholar 

  5. Watson, A. J., & Valberg, P. A. (2001). Carbon black and Soot: two different substances. AIHAJ American Industrial Hygiene., 62, 218–228.

    Article  Google Scholar 

  6. Mills, N. L., Donaldson, K., Hadoke, P. W., Boon, N. A., MacNee, W., Cassee, F. R., et al. (2009). Adverse cardiovascular effects of air pollution. Nature Clinical Practice. Cardiovascular Medicine, 6, 36–44.

    Article  Google Scholar 

  7. Moller, W., Felten, K., Sommerer, K., Scheuch, G., Meyer, G., Meyer, P., et al. (2008). Deposition, retention, and translocation of ultrafine particles from the central airways and lung periphery. American Journal of Respiratory and Critical Care Medicine, 177, 426–432.

    Article  Google Scholar 

  8. Donaldson, K., Stone, V., Borm, P. J., Jimenez, L. A., Gilmour, P. S., Schins, R. P., et al. (2003). Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10) Free Rad. Biologie Médicale, 34, 1369–1382.

    Google Scholar 

  9. Choi, H. S., Aschitate, Y., Lee, J. H., Kim, S. H., Matsui, A., Insin, N., et al. (2010). Rapid translocation of nanoparticles from the lung airspaces to the body. Nature Biotechnology, 28, 1300–1303.

    Article  Google Scholar 

  10. Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W. (2004). Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology, 16, 437–445.

    Article  Google Scholar 

  11. Ayres, J. G., Borm, P., Cassee, F. R., Castranova, V., Donaldson, K., Ghio, A., et al. (2008). Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential: a workshop report and consensus statement. Inhalation Toxicology, 20, 75–99.

    Article  Google Scholar 

  12. Mudway, I. S., Stenfors, N., Duggan, S. T., Roxborough, H., Zielinski, H., Marklund, S. L., et al. (2004). An in vitro and in vivo investigation of the effects of diesel exhaust on human airway lining fluid antioxidants. Archives of Biochemistry and Biophysics, 423, 200–212.

    Article  Google Scholar 

  13. Squadrito, G. L., Cueto, R., Dellinger, B., Pryor, W. A. (2001). Quinoid redox cycling as a mechanism for sustained free radical. Free Radical Biology and Medicine, 31, 1132–1138.

    Article  Google Scholar 

  14. Xia, T., Kovochich, M., Nel, A. (2006). The role of reactive oxygen species and oxidative stress in mediating particulate matter injury. Clinics in Occupational and Environmental Medicine, 5, 817–836.

    Google Scholar 

  15. Zhong, Y., Carmella, S. G., Upadhyaya, P., Hochalter, J. B., Rauch, D., Oliver, A., et al. (2011). Immediate consequences of cigarette smoking: rapid formation of polycyclic aromatic hydrocarbon diol epoxides. Chemical Research in Toxicology, 24, 246–252.

    Article  Google Scholar 

  16. Li, N., Sioutas, C., Cho, A., Schmitz, D., Misra, C., Sempf, J., et al. (2003). Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environmental Health Perspectives, 111, 455–460.

    Article  Google Scholar 

  17. Bonvallot, V., Baeza-Squiban, A., Baulig, A., Brulant, S., Boland, S., Muzeau, F., et al. (2001). Organic compounds from diesel exhaust particles elicit a proinflammatory response in human airway epithelial cells and induce cytochrome p450 1A1 expression. American Journal of Respiratory Cell and Molecular Biology, 25, 515–521.

    Article  Google Scholar 

  18. Porter, D. W., Leonard, S., Castranova, V. (2007). Particle and cellular oxidative and nitrosative stress. In K. Donaldson & P. Borm (Eds.), Particle toxicology (pp. 119–138). New York: Taylor & Francis Group.

    Google Scholar 

  19. Wilson, M. R., Lightbody, J. H., Donaldson, K., Sales, J., Stone, V. (2002). Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicology and Applied Pharmacology, 184, 172–179.

    Article  Google Scholar 

  20. Dick, C. A., Brown, D. M., Donaldson, K., Stone, V. (2003). The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhalation Toxicology, 15, 39–52.

    Article  Google Scholar 

  21. Schins, R. P., Lightbody, J. H., Borm, P. J., Shi, T., Donaldson, K., Stone, V. (2004). Inflammatory effects of coarse and fine particulate matter in relation to chemical and biological constituents. Toxicology and Applied Pharmacology, 195, 1–11.

    Article  Google Scholar 

  22. Garza, K. M., Soto, K. F., Murr, L. E. (2008). Cytotoxicity and reactive oxygen species generation from aggregated carbon and carbonaceous nanoparticulate materials. International Journal of Nanomedicine, 3, 83–94.

    Article  Google Scholar 

  23. Chuang, H. C., Jones, T. P., Lung, S. C., BéruBé, K. A. (2011). Soot-driven reactive oxygen species formation from incense burning. Science of the Total Environment, 409, 4781–4787.

    Article  Google Scholar 

  24. Jung, H., Guoa, B., Anastasio, C., Kennedy, I. M. (2006). Quantitative measurements of the generation of hydroxyl radicals by soot particles. Atmospheric Environment, 40, 1043–1052.

    Article  Google Scholar 

  25. Shvedova, A. A., Kisin, E. R., Porter, D., Schulte, P., Kagan, V. E., Fadeel, B., et al. (2009). Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: two faces of Janus? Pharmacology and Therapeutics, 121, 192–204.

    Article  Google Scholar 

  26. Sanchez, V. C., Jachak, A., Hurt, R. H., Kane, A. B. (2012). Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chemical Research in Toxicology, 25, 15–34.

    Article  Google Scholar 

  27. Dugan, L. L., Turetsky, D. M., Du, C., Lobner, D., Wheeler, M., Almili, C. R., et al. (1997). Carboxy fullerenes as neuroprotective agents. Proceedings of the National Academy of Sciences, 94, 9434–9439.

    Article  Google Scholar 

  28. Lin, A. M. Y., Chyi, B. Y., Wang, S. D., Yu, H. H., Kanakamma, P. P., Luh, T. Y., et al. (1999). Carboxyfullerene prevents iron-induced oxidative stress in rat brain. Journal of Neurochemistry, 72, 1634–1640.

    Article  Google Scholar 

  29. Karakoti, A., Singh, S., Dowding, J. M., Seal, S., Self, W. T. (2010). Redox-active radical scavenging nanomaterials. Chemical Society Reviews, 39, 4422–4432.

    Article  Google Scholar 

  30. Medalia, A. I., Rivin, D., Sanders, D. R. (1983). A comparison of carbon black with soot. Science of the Total Environment, 31, 1–22.

    Article  Google Scholar 

  31. Mwila, J., Miraftab, M., Horrocks, A. R. (1994). Effect of carbon black on the oxidation of polyolefins—an overview. Polymer Degradation and Stability, 44, 351–356.

    Article  Google Scholar 

  32. Watts, P. C. P., Fearon, P. K., Hsu, W. K., Billingham, N. C., Kroto, H. W., Walton, D. R. M. (2003). Carbon nanotubes as polymer antioxidants. Journal of Materials Chemistry, 13, 491–495.

    Article  Google Scholar 

  33. Krusic, P. J., Wasserman, E., Keizer, P. N., Morton, J. R., Preston, K. F. (1991). Radical reaction of C60. Science, 254, 1183–1185.

    Article  Google Scholar 

  34. Ying, Y., Saini, R. K., Liang, F., Sadana, A. K., Billups, W. E. (2003). Functionalization of carbon nanotubes by free radicals. Organic Letters, 5, 1471–1473.

    Article  Google Scholar 

  35. Zeilanov, E. B., & Koûmehl, G. (2001). Fullerene C60 as an antioxidant for polymers. Polymer Degradation and Stability, 71, 197–202.

    Article  Google Scholar 

  36. Fenoglio, I., Tomatis, M., Lison, D., Muller, J., Fonseca, A., Nagy, J. B., et al. (2006). Reactivity of carbon nanotubes: free radicals generation or scavenging activity? free radic. Free Radical Biology & Medicine, 40, 1227–1233.

    Article  Google Scholar 

  37. Crouzier, D., Follot, S., Gentilhomme, E., Flahaut, E., Arnaud, R., Dabouis, V., et al. (2010). Carbon nanotubes induce inflammation but decrease the production of reactive oxygen species in lung. Toxicology, 272, 39–45.

    Article  Google Scholar 

  38. Galano, A., Francisco-Marquez, M., Martinez, A. (2010). Influence of point defects on the free-radical scavenging capability of single-walled carbon nanotubes. Journal of Physical Chemistry C, 114, 8302–8308.

    Article  Google Scholar 

  39. Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M. (2006). Chemistry of carbon nanotubes. Chemistry Review, 106, 1105–1136.

    Article  Google Scholar 

  40. Fenoglio, I., Greco, G., Tomatis, M., Muller, J., Raymundo-Pinero, E., Beguin, F., et al. (2008). Structural defects play a major role in the acute lung toxicity of multi-wall carbon nanotubes: physico-chemical aspects. Chemical Research in Toxicology, 21, 1690–1697.

    Article  Google Scholar 

  41. Shukla, P. K., & Mishra, P. C. (2010). Effects of diameter, length, chirality and defects on the scavenging action of single-walled carbon nanotubes for OH radicals: a quantum computational study. Chemical Physics, 369, 101–107.

    Article  Google Scholar 

  42. Zeylanov, E. B., Allen, N. S., Salmanova, N. I. (2009). Radical scavenging efficiency of different fullerenes C60–C70 and fullerene soot. Polymer Degradation and Stability, 94, 1183–1189.

    Article  Google Scholar 

  43. Alfè, M., Apicella, B., Barbella, R., Rouzaud, J. N., Tregrossi, A., Ciajolo, A. (2009). Structure–property relationship in nanostructures of young and mature soot in premixed flames. Proceedings of the Combustion Institute, 32, 697–704.

    Article  Google Scholar 

  44. Ciajolo, A., D’Anna, A., Barbella, R. (1994). PAH and high molecular weight species formed in a premixed methane flame. Combustion Science and Technology, 100, 1–6.

    Article  Google Scholar 

  45. Alfè, M., Apicella, B., Tregrossi, A., Ciajolo, A. (2008). Identification of large plyciclic aromatic hydrocarbons in carbon particulates formed in a fuel-rich premixed ethylene flame. Carbon, 46, 2059–2066.

    Article  Google Scholar 

  46. D’Anna, A., Ciajolo, A., Alfè, M., Apicella, B., Tregrossi, A. (2009). Effect of fuel/air ratio and aromaticity on the molecular weight distribution of soot in premixed n-heptane flames. Proceedings of the Combustion Institute, 32, 803–810.

    Article  Google Scholar 

  47. Alfè, M., Apicella, B., Barbella, R., Tregrossi, A. (2007). Distribution of soot molecular weight/size along premixed flames as inferred by size exclusion chromatography. Energy & Fuels, 21, 136–140.

    Article  Google Scholar 

  48. Visentin, S., Barbero, N., Musso, S., Mussi, V., Biale, C., Ploeger, R., et al. (2010). A sensitive and practical fluorimetric test for CNT acidic site determination. Chemical Communications, 46, 1443–1445.

    Article  Google Scholar 

  49. Pietroiusti, A., Massimiani, M., Fenoglio, I., Colonna, M., Valentini, F., Palleschi, G., et al. (2011). Low doses of pristine and oxidized single wall carbon nanotubes affect mammalian embryonic development. ACS Nano, 5, 4624–4633.

    Article  Google Scholar 

  50. Polimeni, M., Gazzano, E., Ghiazza, M., Fenoglio, I., Bosia, A., Fubini, B., et al. (2008). Quartz inhibits glucose 6-phosphate dehydrogenase in murine alveolar macrophages. Chemical Research in Toxicology, 21, 888–894.

    Article  Google Scholar 

  51. Kroll, A., Pillukat, M. H., Hahn, D., Schnekenburger, J. (2012). Interference of engineered nanoparticles with in vitro toxicity assays. Archives of Toxicology, 86, 1123–1136.

    Article  Google Scholar 

  52. Alfè, M., Apicella, B., Rouzaud, J. N., Tregrossi, A., Ciajolo, A. (2010). The effect of temperature on soot properties in premixed methane flames. Combustion and Flame, 157, 1959–1965.

    Article  Google Scholar 

  53. Vander Wal, R. L., & Tomasek, A. J. (2003). Soot oxidation: dependence upon initial nanostructure. Combustion and Flame, 134, 1–9.

    Article  Google Scholar 

  54. Russo, C., Stanzione, F., Tregrossi, A., Alfè, M., Ciajolo, A. (2012). The effect of temperature on the condensed phases formed in fuel-rich premixed benzene flames. Combustion and Flame, 159, 2233–2242.

    Article  Google Scholar 

  55. Tuinstra, F., & Koenig, J. L. (1970). Raman spectrum of graphite. The Journal of Chemical Physics, 53, 1126–1130.

    Article  Google Scholar 

  56. Ferrari, A. C., & Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B, 61, 96–107.

    Article  Google Scholar 

  57. Chhowalla, M., Ferrari, A. C., Robertson, J., Amaratunga, G. A. J. (2000). Evolution of sp(2) bonding with deposition temperature in tetrahedral amorphous carbon studied by Raman spectroscopy. Applied Physics Letters, 76, 1419–1421.

    Article  Google Scholar 

  58. Alfè, M., Gargiulo, V., Ghiazza, M., Carella, E., Fenoglio, I., Ciajolo, A. (2012). The effect of nanostructure and adsorbed organic species on the radical activity of combustion-derived. In P. Manosh (Ed.), Soot: sources, formation and health effects (pp. 151–163). New York: Nova Science Publishers.

    Google Scholar 

  59. Hirsch, A. (2002). Functionalization of single-walled carbon nanotubes. Angewandte Chemie International Edition, 41(11), 1853–1859.

    Article  Google Scholar 

  60. Li, W., Bai, Y., Zhang, Y. K., Sun, M. L., Cheng, R. M., Xu, X. C., et al. (2005). Effect of hydroxyl radical on the structure of multi-walled carbon nanotubes. Synthetic Metals, 155, 509–515.

    Article  Google Scholar 

  61. Shi, X., Jiang, B., Wang, J., Yang, Y. (2012). Influence of wall number and surface functionalization of carbon nanotubes on their antioxidant behavior in high density polyethylene. Carbon, 50, 1005–1013.

    Article  Google Scholar 

  62. Francisco-Marquez, M., Galano, A., Martinez, A. (2010). On the free radical scavenging capability of carboxylated single-walled carbon nanotubes" J. Physics and Chemistry C, 114, 6363–6370.

    Article  Google Scholar 

  63. Martínez, A., Francisco-Marquez, M., Galano, A. (2010). Effect of different functional groups on the free radical scavenging capability of single-walled carbon nanotubes. The Journal of Physical Chemistry C, 114, 14734–14739.

    Article  Google Scholar 

  64. Gazzano, E., Ghiazza, M., Polimeni, M., Bolis, V., Fenoglio, I., Attanasio, A., et al. (2012). Physicochemical determinants in the cellular responses to nanostructured amorphous silicas. Toxicological Sciences, 128, 158–170.

    Article  Google Scholar 

  65. Liu, X., Sen, S., Liu, J., Kulaots, I., Geohegan, D., Kane, A., et al. (2011). Antioxidant deactivation on graphenic nanocarbon surfaces. Small, 19, 2775–2785.

    Article  Google Scholar 

  66. Foucaud, L., Goulaouic, S., Bennasroune, A., Laval-Gilly, P., Brown, D., Stone, V., et al. (2010). Oxidative stress induction by nanoparticles in THP-1 cells with 4-HNE production: stress biomarker or oxidative stress signalling molecule? Toxicology In Vitro, 24, 1512–1520.

    Article  Google Scholar 

  67. Kim, T. W., Chung, P. W., Slowing, I. I., Tsunoda, M., Yeung, E. S., Lin, V. S. J. (2008). Structurally ordered mesoporous carbon nanoparticles as transmembrane delivery vehicle in human cancer cells. Nano Letters, 8, 3724–3727.

    Article  Google Scholar 

  68. Chandra, S., Das, P., Bag, S., Laha, D., Pramanik, P. (2011). Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles. Nanoscale, 3, 1533–1540.

    Article  Google Scholar 

  69. Boncel, S., Artur, P., Herman, A. P., Walczak, K. Z. (2012). Magnetic carbon nanostructures in medicine. Journal of Materials Chemistry, 22, 31–37.

    Article  Google Scholar 

  70. Aillon, K. L., Xie, Y., El-Gendy, N., Berkland, C. J., Forrest, M. L. (2009). Effects of nanomaterial physicochemical properties on in vivo toxicity. Advanced Drug Delivery Reviews, 61, 457–466.

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the Accordo CNR-MSE “Carbone Pulito-CO2 capture” and Nanoparticle Impact on Pulmonary Surfactant Interfacial Properties (NIPS)—Seed Project 2009-IIT. One of the authors (EC) was a recipient of a doctoral fellowship from the Istituto Nazionale per l′Assicurazione contro gli infortuni sul lavoro (INAIL) Piemonte, Italia. The authors gratefully acknowledge Luciana Lisi from IRC-CNR for BET analyses. The micro-Raman and DLS equipment and the microplate reader were acquired by the Interdepartmental Center “G. Scansetti” for Studies on Asbestos and Other Toxic Particulates with a grant from Compagnia di San Paolo, Torino, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Fenoglio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carella, E., Ghiazza, M., Alfè, M. et al. Graphenic Nanoparticles from Combustion Sources Scavenge Hydroxyl Radicals Depending Upon Their Structure. BioNanoSci. 3, 112–122 (2013). https://doi.org/10.1007/s12668-013-0077-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-013-0077-6

Keywords

Navigation