Skip to main content
Log in

Alternative infrastructure technologies evaluation in order to develop the stranded natural gas fields: a systematic review

  • Review Article
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

Natural gas is an increasingly important energy source to meet the world consumption demand, especially in the next decades because of its role as a transition energy in emission reduction programs. A conventional gas field was generally developed with utilized pipelines to deliver the natural gas to customers or capitalized the liquified natural gas (LNG) technology, whereas the gas is converted to the cryogenic liquid form to minimize its volume and transported by ship or truck to the customer facility. Some gas fields, which are called stranded gas fields, have small reserves, are far from the gas infrastructures or their markets, and have high-cost development and production, and gas venting. Because of the increasing gas demand, the stranded gas fields need to expand in order to overcome the challenge that they face to utilize. The selection of suitable technology to optimize the stranded gas is the main objection to utilize this energy for customers’ operations. In the present manuscript, the investigations and evaluations of previous studies of the infrastructure technologies to develop stranded gas fields were conducted, especially in using CNG, LNG, and GTL. The assessment includes the comparison of the infrastructure characteristics, implementation and project development, distance to market, economic parameters, and the environmental view point. CNG is a technology that is lower in capex, high in transportation costs with an optimal delivery distance of up to 2500 NM. LNG requires a high capex plant, has the best thermal efficiency with an optimal delivery distance from 2500 to 5000 NM. GTL is still in the development stage for small scale due to the high capex plant which potential implementation above 6000 NM. Qualitative analysis was conducted to evaluate the application of technology and the potential for future development. From the qualitative comparison, CNG is a technology with the lowest complexity with limited market flexibility, LNG is a medium complexity technology with an open market, and GTL is a technology with high complexity with the easiest market.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. He, T., Liu, Z., Ju, Y., Parves, A.M.: A comprehensive optimization and comparison of modified single mixed refrigerant and parallel nitrogen expansion liquefaction process for small-scale mobile LNG plant. Energy 167, 1–12 (2019)

    Article  CAS  Google Scholar 

  2. Atienza-Marquez, A., Ayou, D.S., Bruno, J.C., Coronas, A.: Energy polygeneration systems based on LNG-regasification: comprehensive overview and techno-economic feasibility. Therm. Sci. Eng. Progress. 20, 100677 (2020)

    Article  Google Scholar 

  3. Crow, D.J.G., Giarola, S., Hawkes, A.D.: A dynamic model of global natural gas supply. Appl. Energy 218, 452–469 (2018)

    Article  ADS  Google Scholar 

  4. Khalilpour, R., Karimi, I.A.: Evaluation of utilization alternatives for stranded natural gas. Energy 40(12), 317–328 (2012)

    Article  CAS  Google Scholar 

  5. Economides, M.J., Sun, K., Subero, G.: Compressed Natural Gas (CNG): An alternative to liquified natural gas (LNG). SPE 92047 (2006)

  6. Soltanieh, M., Zohrabian, A., Gholipour, M.J., Kalnay, E.: A review of global gas flaring and venting environment: and impact on the case study of Iran. Int. J. Greenhouse Gas Control 49, 488–509 (2016)

    Article  CAS  Google Scholar 

  7. Economides, M.J., Wood, D.A.: The state of natural gas. J. Nat. Gas Sci. Eng. 1, 1–13 (2009)

    Article  Google Scholar 

  8. Leather, D.T.B., Bahadori, A., Nwaoha, C., Wood, D.A.: A review of Australia’s natural gas resources and their exploitation. J. Nat. Gas Sci. Eng. 10, 68–88 (2013)

    Article  Google Scholar 

  9. BP. BP Statistical Review of World Energy. (2022)

  10. Indonesia. Ministry of Energy and Mineral Resources Republic of Indonesia. Handbook of Energy & Economic Statistics of Indonesia (2022)

  11. Institute for Essential Services Reforms. Indonesia Energy Transition Outlook (2022)

  12. Indonesia. Ministry of Energy and Mineral Resources Republic of Indonesia. Neraca Gas Bumi Indonesia 2018–2027 (2018)

  13. Cabalu, H.: Indicators of security of natural gas supply in Asia. Energy Policy 38, 218–225 (2010)

    Article  Google Scholar 

  14. Khalilpour, R., Karimi, I.A.: Investment portfolios under uncertainty for utilizing natural gas resources. Comput. Chem. Eng. 35, 1827–1837 (2011)

    Article  CAS  Google Scholar 

  15. Pinder, D.: Offshore oil and gas: global resource knowledge and technological change. Ocean Coast. Manag. 44, 579–600 (2001)

    Article  Google Scholar 

  16. Lawal, K.A., Ovuru, M.I., Eyitayo, S.I., Matemilola, S., Adeniyi, A.T.: Underground storage as a solution for stranded associated gas in oil fields. J. Petrol. Sci. Eng. 150, 366–375 (2017)

    Article  CAS  Google Scholar 

  17. US Department of Energy. Stranded natural gas roadmap. National Energy Technology Laboratory (2020)

  18. Nwaoha, C., Wood, D.A.: A review of the utilization and monetization of Nigeria’s natural gas resources: current realities. J. Nat. Gas Sci. 18, 412–432 (2014)

    Article  Google Scholar 

  19. Black, B.G.: Monetizing stranded gas: economic valuation of GTL and LNG projects. Thesis. The University of Texas, Austin (2010)

    Google Scholar 

  20. Takeshita, T., Yamaji, K.: Important roles of Fischer–Tropsch synfuels in the global energy future. Energy Policy 36, 2773–2784 (2008)

    Article  Google Scholar 

  21. Shah, P., Durr, C.: Petroleum Engineering Handbook. Chap. 8: Monetizing Stranded Gas. Society of Petroleum Engineers (2020)

  22. Udechukwu, M.C., Obah, B., Anyadiegwu, C.I., Onwukwe, S., Obibuike, U.J., Ekwueme, S.T.: Modelling flare gas recovery system for recovery and utilization of stranded associated gas in the Niger Delta. Int. J. Oil Gas Coal Eng. (2022)

  23. Smith, M., Gonzales, J. (2014). Costs associated with compressed natural gas vehicle fueling infrastructure. U.S. Department of Energy. Energy Efficiency and Renewable Energy

  24. Gao, J., You, F.: Design and optimization of shale gas energy systems: overview, research, challenges, and future directions. Comput. Chem. Eng. 106, 699–718 (2017)

    Article  CAS  Google Scholar 

  25. Opara, O.C., Ibe, E.C., Onyelucheya, O.E., Obijiaku, J.C.: Development of a template for the profitability study of stranded natural gas processing options. Int. J. Eng. Sci. Manag. Res. 4(10) (2017)

  26. Kabeh, K.Z., Khoshkoo, R.H.: Economic feasibility of small-scale gas to liquid technology in reducing flaring in Iran and case study of implementing the technology at the third South Pars refinery. Energy Equip. Syst. 9(4), 317–330 (2021)

    Google Scholar 

  27. Hilary, I.W., Okwor, K., Okoro, F.: Gas monetization in Nigeria: review of constraints and economic implications. Int. J. Sci. Eng. Res. 10(10), 1120–1133 (2019)

    Google Scholar 

  28. Nwankwo, J.E.: Gas utilization in Nigeria: an economic comparison of gas-to-liquid and liquified natural gas technologies. Dissertation. North-West University, South Africa (2009)

  29. Antohny, K., Anyadlegwu, C.I.C. (2013). Monetizing stranded gas reserves in Nigeria. Academic Research International. 4(5).

  30. Attanasi, E.D., Freeman, P.A.: Role of stranded gas in increasing global gas supplies. U.S. Geological Survey (2013)

  31. Orisaremi, K.K., Chan, F.T.S., Chung, N.S.H.: Potential reductions in global gas flaring for determining the optimal sizing of gas-to-wire (GTW) process: an inverse DEA approach. J. Nat. Gas Sci. Eng. 93, 103995 (2021)

    Article  Google Scholar 

  32. Pulhan, A., Yorucu, V., Evca, N.S.: Global energy market dynamics and natural gas development in the Eastern Mediterranean region. Util. Policy 64, 101040 (2020)

    Article  Google Scholar 

  33. Cordano, A.L.V., Zellou, A.M.: Super cycles in natural gas prices and their impact on Latin American energy and environmental policies. Resour. Policy 65, 101513 (2020)

    Article  Google Scholar 

  34. Firdaus, N., Mori, A.: Stranded assets and sustainable energy transition: a systematic and critical review of incumbents’ response. Energy Sustain. Dev. 73, 76–86 (2023)

    Article  Google Scholar 

  35. Tahir, S.M., Udezi, E.E.A.: Gas Development in an emerging economy: Nigerian case study. SPE 189716 (2017)

  36. Honig, V., Prochazka, P., Obergruber, M., Smutka, L., Kucerova, V.: Economic and technological analysis of commercial LNG production in the EU. Energies 12, 1565 (2019)

    Article  Google Scholar 

  37. Khalili-Garakani, A., Iravaninia, M., Nezhadfard, M.: A review on the potentials of flare gas recovery applications in Iran. J. Clean. Prod. 279, 123345 (2021)

    Article  CAS  Google Scholar 

  38. Hagos, D.A., Ahlgren, E.: A state-of-the art review on the development of CNG/LNG infrastructure and natural gas vehicles (NGVs). Technical report FutureGas project—WP3 Gas for transport (2015)

  39. Skarvelis, G.V.: Containerized Compressed Natural Gas Shipping. Thesis. Massachusetts Institute of Technology (2013)

  40. Brauers, H.: Natural gas as a barrier to sustainability transitions? A systematic mapping of the risks and challenges. Energy Res. Soc. Sci. 80, 102538 (2022)

    Article  Google Scholar 

  41. Hamidzadeh, Z., Sattari, S., Soltanieh, M., Vatani, A.: Development of a multi-objective decision-making model to recover flare gases in a multi flare gases zone. Energy 203, 117815 (2020)

    Article  CAS  Google Scholar 

  42. Khan, M.I.: Evaluating the strategies of compressed natural gas industry using an integrated SWOT and MCDM approach. J. Clean. Prod. 172, 1035–1052 (2018)

    Article  Google Scholar 

  43. Khalilpour, R., Karimi, I.A.: Evaluation of LNG, CNG, GTL and NGH for monetization of stranded associated gas with the incentive of carbon credit. Int. Petrol. Technol. Conf. 14083 (2009)

  44. Bos, K., Gupta, J.: Stranded assets and stranded resources: Implications for climate change mitigation and global sustainable development. Energy Res. Soc. Sci. 56, 101215 (2019)

    Article  Google Scholar 

  45. Tractebel Engineering, S.A.: CNG for commercialization of small volumes of associated gas. World Bank. Group Energy and Extractives. Global Gas Flaring Reduction (2015)

  46. Nafiscatoha, D., Saksono, N.: Techno economic of CNG & GTG technology applied in gas flare management. International Summit on Science Technology and Humanity (ISETH2019) (2019)

  47. Wang, X., Marongiu-Porcu, M.: The potential of compressed natural gas transport in Asia. International Petroleum Technology Conference 12078 (2008)

  48. Ayomide, O.E.: Domestic Gas Utilization in Nigeria: Exploring the Potential of Compressed Natural Gas (CNG) Using A Machine Learning Based Approach (2018). https://www.researchgate.net/publication/352837057

  49. Tractebel Engineering, S.A.: Mini/Micro LNG for commercialization of small volumes of associated gas. World Bank. Group Energy and Extractives. Global Gas Flaring Reduction (2015)

  50. Dong, L., Wei, S.A., Tan, S., Zhang, H.: GTL or LNG: Which is the best way to monetize “stranded” natural gas? Petrol. Sci. 5, 388–394 (2008)

    Article  CAS  Google Scholar 

  51. Bittante, A., Jokinen, R., Krooks, J., Pettersson, F., Saxén, H.: Optimal design of a small-scale LNG supply chain combining sea and land transports. Ind. Eng. Chem. Res. 56(45), 13434–13443 (2017)

    Article  CAS  Google Scholar 

  52. Tan, S.H., Barton, P.I.: Optimal dynamic allocation of mobile plants to monetize associated or stranded natural gas, part I: Bakken shale play case study. Energy 93, 1581–1594 (2015)

    Article  Google Scholar 

  53. Tan, S.H., Barton, P.I.: Optimal dynamic allocation of mobile plants to monetize associated or stranded natural gas, part II: dealing with uncertainty. Energy 96, 461–467 (2016)

    Article  Google Scholar 

  54. Shirazi, R., Sarmad, M., Rostami, R.M., Moein, P., Zare, M., Mohammadbeigy, K.: Feasibility study of the small scale LNG plant infrastructure for gas supply in north of Iran (Case Study). Sustain. Energy Technol. Assess. 35, 220–229 (2019)

    Google Scholar 

  55. Tjandranegara, A., Arsegianto, A., Purwanto, W.: Natural gas as petroleum fuel substation: Analysis of supply-demand projections, infrastructures, investments, and end-user process. Makara J. Technol. 15(1), 45–54 (2011)

    Google Scholar 

  56. Lee, J.H., Kang, J.K., Moon, Y.S., Yoo, S.J.: Cluster LNG: A Solution for Southeast Asia Gas Demands. SPE 145862 (2011)

  57. Abdulrahman, I., Masa, V., Teng, S.Y.: Process intensification in the oil and gas industry: A technological framework. Chem. Eng. Process. Process Intensif. 159, 108208 (2021)

    Article  CAS  Google Scholar 

  58. Khan, M.S., Karimi, I.A., Wood, D.A.: Retrospective and future perspective of natural gas liquefaction and optimization technologies contributing to efficient LNG supply: a review. J. Nat. Gas Sci. Eng. 45, 164–188 (2017)

    Article  Google Scholar 

  59. Mahendra, M., Giffari, F., Widiastuti, P., Ismukurnianto, D.A.: Determination of LNG a system Supply Chain and Estimation of LNG Economical Price for Locomotives in Java Island. Proceedings of the International Conference on Innovation, Entrepreneurship and Technology (2015).

  60. Kim, J., Seo, Y., Chang, D.: Economic evaluation of a new small-scale LNG supply chain using liquid nitrogen for natural-gas liquefaction. Appl. Energy 182, 154–163 (2016)

    Article  ADS  CAS  Google Scholar 

  61. Wood, D.A., Nwaoha, C., Towler, B.F.: Gas-to-liquids (GTL): a review of an industry offering several routes for monetizing natural gas. J. Nat. Gas Sci. Eng. 9, 196–208 (2012)

    Article  CAS  Google Scholar 

  62. Fleisch, T.: Associated gas monetization via mini GTL.World Bank. Group Energy and Extractives. Global Gas Flaring Reduction (2014)

  63. Toochukwu, E.S., Chinedu, I.N., Julian, O.U., Anthony, K., Princewill, O.N., Emeka, O.J., Boniface, O.: Economics of gas-to-liquids (GTL) plants. Petrol. Sci. Eng. 3(2), 85–93 (2019)

    Article  Google Scholar 

  64. Ogugbue, C.E., Chukwu., G.A., Khataniar, S.: Economics of GTL technology for gas utilization. SPE 107654 (2007)

  65. Brown, C.: Gas to Liquid: A viable alternative to oil-derived transport fuels?. The Oxford Institute for Energy Studies (2013)

  66. Longo, T., McLeod, P., Zhang, D.: Gas to liquids: economic study. CEED Seminar Proceedings (2010)

  67. Stanley, I.O.: Gas-to-liquid technology: prospect for natural gas utilization in Nigeria. J. Nat. Gas Sci. Eng. 1, 190–194 (2009)

    Article  Google Scholar 

  68. Kim, H.J, Choi, D.K., Ahn, S.I., Lim, H.W.: GTL FPSO—an Alternative solution to offshore stranded gas. SPE 169896 (2014)

  69. Adegoke, A., Barrufet, M., Ehlig-Economides, C.: GTL plus power generation: The optimal alternative for natural gas exploitation in Nigeria. Int. Petrol. Technol. Conf. 10523 (2005)

  70. Castillo, L., Dorao, C.A.: Influence of the plot area in an economical analysis for selecting small scale LNG technologies for remote gas production. J. Nat. Gas Sci. Eng. 2, 302–309 (2010)

    Article  Google Scholar 

  71. McFarlan, A.: Techno-economic assessment of pathways for liquefied natural gas (LNG) to replace diesel in Canadian remote northern communities. Sustain. Energy Technol. Assess. 42, 100821 (2020)

    Google Scholar 

  72. Alabi, F.A., Awotunde, T.O.: Offshore liquefied natural gas LNG and monetization. Offshore Technology Conference-29509-MS (2019)

  73. Nwaoha, C.: Monetizing stranded reserves: the role of floating LNG. SPE 150787 (2011)

  74. Raj, R., Suman, R., Ghandehariun, S., Kumar, A., Tiwari, M.K.: A techno-economic assessment of the liquefied natural gas (LNG) production facilities in Western Canada. Sustain. Energy Technol. Assess. 140–152 (2016)

  75. Lee, S., Seo, S., Lee, J., Chang, D.: Economic evaluation of pressurized LNG supply chain. J. Nat. Gas Sci. Eng. 33, 405–418 (2016)

    Article  Google Scholar 

  76. He, T., Liu, Z., Ju, Y., Parvez, A.M.: A comprehensive optimization and comparison of modified single mixed refrigerant and parallel nitrogen expansion liquefaction process for small-scale mobile LNG plant. Energy 167, 1–12 (2019)

    Article  CAS  Google Scholar 

  77. Tcvetkov, P.: Small-scale LNG projects: Theoretical framework for interaction between stakeholders. Energy Rep. 9, 928–933 (2022)

    Article  Google Scholar 

  78. Lothe, P. Pressurized natural gas: an efficient and reliable CNG solution for offshore gas transportation. Offshore Technology Conference 17231 (2005)

  79. Pujotomo, I.: E3S Compressed natural gas technology for alternative fuel power plants. Web Conf. 31, 01011 (2018)

    Google Scholar 

  80. Marongiu-Porcu, M., Consultants, E., Wang, X., Economides, M.J.: The economics of compressed natural gas transport sea transport. SPE 115310 (2008)

  81. Ping, X., Yao, B., Zhang, H., Yang, F.: Thermodynamic, economic, and environmental analysis and multi-objective optimization of a dual loop organic rankine cycle for CNG engine waste heat recovery. Appl. Therm. Eng. 193, 116980 (2021)

    Article  CAS  Google Scholar 

  82. A.T. Kearney Energy Transition Institute. (2014). Introduction to natural gas.

  83. Raghoo, P., Surrop, D., Wolf, F.: Natural gas to improve energy security in small island developing states: a techno-economic analysis. Dev. Eng. 2, 92–98 (2017)

    Article  Google Scholar 

  84. Cornot-Gandolphe, S., Appert, O., Dickel, R., Chabrelie, M-F., Rojey, A.: The challenges of further cost reductions for new supply options (pipeline, LNG, GTL). 22nd World Gas Conference (2003).

  85. Economides, M.J.: The economics of gas to liquids compared to liquefied natural gas. World Energy Magaz. 8(1), 136 (2005)

    Google Scholar 

  86. Odumugbo, C.A.: Natural gas utilisation in Nigeria: challenges and opportunities. J. Nat. Gas Sci. Eng. 2, 310–316 (2010)

    Article  Google Scholar 

  87. Verghese, J.T.: Options for exploiting stranded gas: an overview of issues, opportunities & solutions. SPE 84250 (2003)

  88. Behroozsarand, A., Zamaniyan, A.: Simulation and optimization of an integrated GTL process. J. Clean. Prod. 142, 2315–2327 (2017)

    Article  CAS  Google Scholar 

  89. Al-Sobhi, S.A., Elkamel, A.: Simulation and optimization of natural gas processing and production network consisting of LNG, GTL, and methanol facilities, 500–508 (2015)

  90. Santos, G.R.S., Basha, O.M., Wang, R., Ashkanani, H., Morsi, B.: Techno-economic assessment of Fischer–Tropsch synthesis and direct methane-to-methanol processes in modular GTL reactors. Catal. Today 371, 93–112 (2021)

    Article  CAS  Google Scholar 

  91. Ramberg, D.J., Chen, Y.H.H., Paltsev, S., Parsons, J.E.: The economic viability of gas-to-liquids technology and the crude oil–natural gas price relationship. Energy Econ. 63, 13–21 (2017)

    Article  Google Scholar 

  92. Shuster, E.: Analysis of natural gas-to liquid transportation fuels via Fischer–Tropsch. National Energy Technology Laboratory (2013)

  93. McIlwaine, N., Foley, A.M., Morrow, D.J., Kez, D.A., Zang, C., Lu, Xi., Best, R.J.: A state-of-the-art techno-economic review of distributed and embedded energy storage for energy systems. Energy 229, 120461 (2021)

    Article  Google Scholar 

  94. Ruester, S., Neumann, A.: The prospects for liquefied natural gas development in the US. Energy Policy 36, 3160–3168 (2008)

    Article  Google Scholar 

  95. Dorigoni, S., Portatadino, S.: LNG development across Europe: Infrastructural and regulatory analysis. Energy Policy 36, 3366–3373 (2008)

    Article  Google Scholar 

  96. Gronhaug, R., Christiansen, M.: Supply chain optimization for the liquefied natural gas business. Springer-Verlag, Cham (2009)

    Book  Google Scholar 

  97. Sapkota, K., Oni, A.O., Kumar, A.: Techno-economic and life cycle assessments of the natural gas supply chain from production sites in Canada to north and southwest Europe. J Nat Gas Sci Eng 52, 401–409 (2018)

    Article  Google Scholar 

  98. Dodds, P.E., McDowall, W.: The future of the UK gas network. Energy Policy 60, 305–316 (2013)

    Article  Google Scholar 

  99. In, S.Y., Weyant, J.P., Manav, B.: Pricing climate-related risks of energy investments. Renew. Sustain. Energy Rev. 154, 111881 (2022)

    Article  Google Scholar 

  100. Hong, B., Li, X., Song, S., Chen, S., Zhao, C., Gong, J.: Optimal planning and modular infrastructure dynamic allocation for shale gas production. Appl. Energy 261, 114439 (2020)

    Article  Google Scholar 

  101. Sankararaj, R., Mirzaee, F., Wadsley, A.: State-of-the-art assessment of natural gas liquids recovery processes: Techno-economic evaluation, policy implications, open issues, and the way forward. Energy 238, 176434 (2022)

    Google Scholar 

  102. Allen, H., Millard, K., Rahman, M.S.U., Barlow, T.: A study on potential use of compressed natural gas (CNG) in public transport in Indonesia. Transport Research Laboratory (2015)

  103. Mitchel, G.: Building a business case for compressed natural gas in fleet applications. National Renewable Energy Laboratory (2015)

  104. Qyyum, M.A., Naquash, A., Haider, J., Al-Sobhi, S.A., Lee, M.: State-of-the-art assessment of natural gas liquids recovery processes: techno-economic evaluation, policy implications, open issues, and the way forward. Energi. 238, 121684 (2022)

    Article  Google Scholar 

  105. Mitchell, G.: Building a business case for compressed natural gas in fleet applications. National Renewable Energy Laboratory (2015)

  106. Jokar, S.M., Wood, D.A., Sinehbaghizadeh, S., Parvasi, P., Javanmardi, J.: Transformation of associated natural gas into valuable products to avoid gas wastage in the form of flaring. J. Nat. Gas Sci. Eng. 94, 104708 (2021)

    Article  Google Scholar 

  107. Global Gas Flaring Reduction Partnership. Mini-GTL Technology Bulletin. 7. March 2020.

  108. The World Bank. 2022 Global Gas Flaring Tracker Report. Global Gas Flaring Reduction (2022)

  109. Peters, R., Baltruweit, M., Grube, T., Samsun, R.C., Stolten, D.: A techno economic analysis of the power to gas route. J. CO2 Util. 34, 616–634 (2019)

    Article  CAS  Google Scholar 

  110. Riepin, I., Schmidt, M., Baringo, L., Musgens, F.: Adaptive robust optimization for European strategic gas infrastructure planning. Appl. Energy 324, 119686 (2022)

    Article  Google Scholar 

  111. Towler, B., Firouzi, M., Wilkinson, R.: Australia’s gas resources and its new approaches. J. Nat. Gas Sci. Eng. 72, 102970 (2019)

    Article  Google Scholar 

  112. Udaeta, M.E.M., Burani, G.F., Maure, J.O.A., Oliva, C.R.: Economics of secondary energy from GTL regarding natural gas reserves of Bolivia. Energy Policy 35, 4095–4106 (2007)

    Article  Google Scholar 

  113. Kimura, S., Miyakoshi, S., Purwanto, A.J., Sidemen, I. G. S., Malik, C., Suharyati, Lutfiana, D.: Feasible solutions to deliver LNG to midsized and large islands in Indonesia. Economic Research Institute for ASEAN and East Asia (ERIA) (2021)

  114. Songhurst, B.: LNG plant cost escalation. The Oxford Institute for Energy Studies (2014)

  115. The World Bank. Global Gas Flaring Reduction Partnership (GGFR). https://www.worldbank.org/en/programs/gasflaringreduction/global-flaring-data; accessed on March 17, 2023, at 22.04 PM (2023)

  116. Rosselot, K.S., Allen, D.T., Ku, A.Y.: Greenhouse gas emissions from LNG infrastructure construction: implications for short-term climate impacts. ACS Sustain. Chem. Eng. 10(26), 8539–8548 (2022)

    Article  CAS  Google Scholar 

  117. Roman-White, S.A., Littlefield, J.A., Fleury, K.G., Allen, D.T., Balcombe, P., Konschnik, K.E., Ewing, J., Ross, G.B., George, F.: LNG supply chains: a supplier-specific life-cycle assessment for improved emission accounting. ACS Sustain. Chem. Eng. 9, 10857–10867 (2021)

    Article  CAS  Google Scholar 

  118. https://www.ey.com/en_pl/law/the-role-of-carbon-neutral-lng-in-the-energy-transition. Accessed on April 28, 2023. 00.56 AM.

  119. Blanton, E., Mosis, S.: The carbon-neutral LNG market: Creating a framework for real emissions reductions. Columbia SIPA. Center on Global Energy Policy (2021)

  120. Sajjad, H., Masjuki, H.H., Varman, M., Kalam, M.A., Arbab, M.I., Imtenan, S., Rahman, S.M.A.: Engine combustion, performance and emission characteristics of gas to liquid (GTL) fuels and its blends with diesel and bio-diesel. Renew. Sustain. Energy Rev. 30, 961–986 (2014)

    Article  CAS  Google Scholar 

  121. Hao, H., Wang, H., Song, L., Li, X., Ouyang, M.: Energy consumption and GHG emissions of GTL fuel by LCA: results from eight demonstration transit buses in Beijing. Appl. Energy 87, 3212–3217 (2010)

    Article  ADS  CAS  Google Scholar 

  122. https://www.istockphoto.com/id/ilustrasi/oil-and-gas, at 15 May 2023, 23.23 PM

  123. Shahab-Deljoo, M., Medi, B., Kazi, M.-K., Jafari, M.: A techno-economic review of gas flaring in Iran and its human and environmental impacts. Process. Saf. Environ. Prot. 173, 642–655 (2023)

    Article  CAS  Google Scholar 

  124. Kabeh, Z.K., Teimouri, A., Changizian, S., Ahmadi, P.: Techno-economic assessment of small-scale gas to liquid technology to reduce waste flare gas in a refinery plant. Sustain. Energy Technol. Assess. 55, 102955 (2023)

    Google Scholar 

  125. Khalili-Garakani, A., Nezhadfard, M., Iravaninia, M.: Enviro-economic investigation of various flare gas recovery and utilization technologies in upstream and downstream of oil and gas industries. J. Clean. Prod. 346, 131218 (2022)

    Article  CAS  Google Scholar 

  126. Harrison, H.G., Sahel, A.: Optimal profitable allocation of associated natural gas resources on a countrywide basis to mitigate flaring. Energy Rep. 10, 2551–2566 (2023)

    Article  Google Scholar 

  127. Powel, J.B.: Natural gas utilization: current status and opportunities. Catal. Today 356, 27–36 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Multiphase Flow Discussion Group, Department of Mechanical and Industrial Department, Universitas Gadjah Mada, for their support to finalize this paper. And also, would like to thank and appreciate to the reviewers for their valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deendarlianto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sihombing, D.J., Indarto & Deendarlianto Alternative infrastructure technologies evaluation in order to develop the stranded natural gas fields: a systematic review. Energy Syst (2024). https://doi.org/10.1007/s12667-024-00661-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12667-024-00661-z

Keywords

Navigation