Skip to main content
Log in

Reliable sustainable management strategies for flare gas recovery: technical, environmental, modeling, and economic assessment: a comprehensive review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The gas flaring network is an inseparable constituent commonly present in most of the oil and gas refineries and petrochemical facilities conferring reliable operational parameters. The improper disposal of burn-off gases improperly results in environmental problems and loss of economic resources. In this regard, waste to energy transforming nexus, in accord with the “carbon neutrality” term, has potentially emerged as a reasonable pathway to preserve our planet. In a transdisciplinary manner, the present review article deeply outlines the different up-to-date strategies developed to recover the emitted gases (flaring minimization) into different value-added products. To analyze the recovery potential of flare gases, different technologies, and decision-making factors have been critically reviewed to find the best recovery methods. We recommend more straightforward recovery methods despite lower profits. In this regard, electricity generation seems to be an appropriate option for application in small amounts of flaring. However, several flare gas utilization processes such as syngas manufacturing, reinjection of gas into petroleum reservoirs, and production of natural gas liquid (NGL) are also recommended as options because of their economic significance, technological viability (both onshore and offshore), and environmental benefits. Moreover, the adopted computational multi-scale data assimilation for predictive modeling of flare gas recovery scenarios has been systematically reviewed, summarized, and inspected.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Abbreviations

APG:

Associated petroleum gases

ATR:

Autothermal reforming

CCS:

Carbon capture and storage

CCPP:

Combined cycle power plant

CNG:

Compressed natural gas

CFER:

Cumulative fossil energy requirements

DME:

Dimethyl ether

DOC:

Direct oxy-combustion

EE:

Engineering Equation Solver

EOR:

Enhanced oil recovery

FJGRC:

Fajr-e-Jam gas refinery complex

FGR:

Flare gas recovery

FAWAG:

Foam-assisted water alternating gas

GAG:

Gas-alternating gas

GTL:

Gas to liquid

GTC:

Gas turbine cycle

GTPP:

Gas turbine power plant

GWP:

Global warming potential

GHG:

Greenhouse gas

HRSG:

Heat recovery steam generator

ICE:

Internal combustion engine

KCPF:

Kalabsha Central Processing Facility

LCA:

Life cycle assessment

LNG:

Liquefied natural gas

LPG:

Liquefied petroleum gas

LRC:

Liquid ring compressor

MUG:

Makeup gas

MDEA:

Methyl diethanolamine

MTBE:

Methyl tertiary butyl ether

MCM:

Million cubic meters

MCM:

Million cubic meters

MSCFD:

Million standard cubic feet per day

MGI:

Miscible gas injection

MED:

Multi-effect desalination

MARS:

Multivariate adaptive regression splines

NGH:

Natural gas hydrate

NGL:

Natural gas liquid

OCM:

Oxidative coupling of methane

PO:

Partial oxidation

POM:

partial oxidation of methane

PNG:

Piped natural gas

PRICO:

Poly Refrigerant integrated cycle operations

PID:

Proportional–integral–derivative controller

RICEC:

Reciprocating internal combustion engine cycle

SGAG:

Simultaneous gas alternating gas

SWAG:

Simultaneous water alternating gas

SOFC:

Solid oxide fuel cell

SOFC/GT:

Solid oxide fuel cell/gas turbine cycle

SCM:

Standard cubic meters

SMR:

Steam methane reforming

STC:

Steam power cycle

STPP:

Steam turbine power plant

TEA:

Techno-economic analysis

TVC:

Thermal vapor compression

WAG:

Water alternating gas

References

  • Abdulrahman AO, Huisingh D, Hafkamp W (2015) Sustainability improvements in Egypt’s oil & gas industry by implementation of flare gas recovery. J Clean Prod 98:116–122. https://doi.org/10.1016/j.jclepro.2014.11.086

    Article  Google Scholar 

  • Abdulrasheed A, Jalil AA, Gambo Y et al (2019) A review on catalyst development for dry reforming of methane to syngas: recent advances. Renew Sustain Energy Rev 108:175–193. https://doi.org/10.1016/J.RSER.2019.03.054

    Article  CAS  Google Scholar 

  • Adekomaya O, Jamiru T, Sadiku R et al (2016) Gas flaring and its impact on electricity generation in Nigeria. J Nat Gas Sci Eng 29:1–6

    Article  Google Scholar 

  • Agi A, Junin R, Gbonhinbor J, Onyekonwu M (2018) Natural polymer flow behaviour in porous media for enhanced oil recovery applications: a review. J Pet Explor Prod Technol 8(4):1349–1362

    Article  CAS  Google Scholar 

  • Aigba PA, Emovon I, Samuel OD et al (2022) Exergetic assessment of waste gas to energy in a novel integrated NGL recovery and power generation plant. Front Energy Res 9. https://doi.org/10.3389/fenrg.2021.798896

  • Al-Khori K, Bicer Y, Aslam MI, Koç M (2021) Flare emission reduction utilizing solid oxide fuel cells at a natural gas processing plant. Energy Reports 7. https://doi.org/10.1016/j.egyr.2021.08.164

  • Al-Khori K, Bicer Y, Koç M (2020) Integration of solid oxide fuel cells into oil and gas operations: needs, opportunities, and challenges. J Clean Prod 245:118924

    Article  Google Scholar 

  • Alfarge D, Wei M, Bai B (2017) Feasibility of CO2-EOR in shale-oil reservoirs: numerical simulation study and pilot tests. In: Carbon Management Technology Conference, CMTC 2017: Global CCUS Innovation Nexus

  • Alkaim AF, Al Janabi S (2020) Multi objectives optimization to gas flaring reduction from oil production. In: Lecture Notes in Networks and Systems. Springer

    Google Scholar 

  • AlNouss A, Ibrahim M, Al-Sobhi SA (2018) Potential energy savings and greenhouse gases (GHGs) emissions reduction strategy for natural gas liquid (NGL) recovery: process simulation and economic evaluation. J Clean Prod 194. https://doi.org/10.1016/j.jclepro.2018.05.107

  • Ameri M, Ahmadi P, Hamidi A (2009) Energy, exergy and exergoeconomic analysis of a steam power plant: a case study. Int J Energy Res 33:499–512. https://doi.org/10.1002/er.1495

    Article  Google Scholar 

  • Amidpour M, Karimi P, Joda M (2018) Energy loss reduction in oil refineries through flare gas recovery approaches. Int J Energy Environ Eng 12(6):424–430. https://doi.org/10.5281/ZENODO.1317096

    Article  Google Scholar 

  • Anosike NB (2013) Technoeconomic evaluation of flared natural gas reduction and energy recovery using gas-to-wire scheme. http://dspace.lib.cranfield.ac.uk/handle/1826/8625

  • Ansarinasab H, Afshar M, Mehdi M (2016) Exergoeconomic evaluation of an LNG and NGL co-production processes based on the MFC refrigeration systems. Gas Process J 4:45–61

    Google Scholar 

  • Araya SS, Liso V, Cui X et al (2020) A review of the methanol economy: the fuel cell route. Energies 13. https://doi.org/10.3390/en13030596

  • Asadi J, Yazdani E, Hosseinzadeh Dehaghani Y, Kazempoor P (2021) Technical evaluation and optimization of a flare gas recovery system for improving energy efficiency and reducing emissions. Energy Convers Manag 236. https://doi.org/10.1016/j.enconman.2021.114076

  • Ateka A, Ereña J, Sánchez-Contador M et al (2018) Capability of the direct dimethyl ether synthesis process for the conversion of carbon dioxide. Appl Sci 8. https://doi.org/10.3390/app8050677

  • Awan AR, Teigland R, Kleppe J (2008) A survey of North Sea enhanced-oil-recovery projects initiated during the years 1975 to 2005. SPE Reserv Eval Eng 11(03):497–512

    Article  CAS  Google Scholar 

  • Azin R, Mehrabi N, Asgari M (2015) An overview of CCS road map and identification of a suitable CO2 disposal site in Eastern Zagros (Fars Area) in Iran. Procedia Earth Planet Sci 15:407–412

    Article  CAS  Google Scholar 

  • Barekat-Rezaei E, Farzaneh-Gord M, Arjomand A et al (2018) Thermo-economical evaluation of producing liquefied natural gas and natural gas liquids from flare gases. Energies 11. https://doi.org/10.3390/en11071868

  • Beal CM, Davidson FT, Webber ME, Quinn JC (2016) Flare gas recovery for algal protein production. Algal Res 20:142–152. https://doi.org/10.1016/j.algal.2016.09.022

    Article  Google Scholar 

  • Beigiparast S, Tahouni N, Abbasi M, Panjeshahi MH (2021) Flare gas reduction in an olefin plant under different start-up procedures. Energy 214. https://doi.org/10.1016/j.energy.2020.118927

  • Bernardi A, Graciano JEA, Chachuat B (2019) Production of chemicals from syngas: an enviro-economic model-based investigation. In: Computer Aided Chemical Engineering. Elsevier

    Google Scholar 

  • Blug M, Leker J, Plass L, Günther A (2014) Methanol generation economics. In: Methanol: The Basic Chemical and Energy Feedstock of the Future: Asinger’s Vision Today. Springer Berlin Heidelber, Berlin, Heidelberg

    Google Scholar 

  • Branco DAC, Szklo AS, Schaeffer R (2010) Co2e emissions abatement costs of reducing natural gas flaring in Brazil by investing in offshore GTL plants producing premium diesel. Energy 35:158–167

    Article  Google Scholar 

  • Burns LJ, Richardson GJ, Kimber RN (2002) Tertiary miscible gas injection in the Alwyn North Brent Reservoirs. In: Proceedings of the European Petroleum Conference. SPE

    Google Scholar 

  • Burrows LC, Haeri F, Cvetic P et al (2020) A literature review of CO2, natural gas, and water-based fluids for enhanced oil recovery in unconventional reservoirs. Energy Fuels 34. https://doi.org/10.1021/acs.energyfuels.9b03658

  • Busetto M, Cijan A (2017) The new era of compressed natural gas transportation. In: Offshore Mediterranean Conference and Exhibition 2017. OMC

    Google Scholar 

  • Cai X, Cai Y, Lin W (2008) Autothermal reforming of methane over Ni catalysts supported over ZrO2-CeO2-Al2O3. J Nat Gas Chem 17:201–207. https://doi.org/10.1016/S1003-9953(08)60052-3

    Article  CAS  Google Scholar 

  • Carapellucci R, Giordano L (2020) Steam, dry and autothermal methane reforming for hydrogen production: a thermodynamic equilibrium analysis. J Power Sources 469:228391. https://doi.org/10.1016/J.JPOWSOUR.2020.228391

    Article  CAS  Google Scholar 

  • Chebeir J, Salas SD, Romagnoli JA (2019) Operability assessment on alternative natural gas liquids recovery schemes. J Nat Gas Sci Eng 71. https://doi.org/10.1016/j.jngse.2019.102974

  • Chen L, Qi Z, Zhang S et al (2020a) Catalytic hydrogen production from methane: a review on recent progress and prospect. Catalysts 10. https://doi.org/10.3390/catal10080858

  • Chen Q, Wang D, Gu Y et al (2020b) Techno-economic evaluation of CO2-rich natural gas dry reforming for linear alpha olefins production. Energy Convers Manag 205:112348. https://doi.org/10.1016/J.ENCONMAN.2019.112348

    Article  CAS  Google Scholar 

  • Chidube Udechukwu M, Obah B, Iyke Anyadiegwu C et al (2022) Modelling flare gas recovery system for recovery and utilization of stranded associated gas in the Niger Delta. Int J Oil, Gas Coal Eng 10:1. https://doi.org/10.11648/j.ogce.20221001.11

    Article  CAS  Google Scholar 

  • Chong ZR, Yang SHB, Babu P et al (2016) Review of natural gas hydrates as an energy resource: Prospects and challenges. Appl Energy 162. https://doi.org/10.1016/j.apenergy.2014.12.061

  • CHP Catalog (2014) Combined heat and power partnership: catalog of CHP technologies

    Google Scholar 

  • Christensen JR, Stenby EH, Skauge A (2001) Review of WAG field experience. SPE Reserv Eval Eng 4. https://doi.org/10.2118/71203-pa

  • Comodi G, Renzi M, Rossi M (2016) Energy efficiency improvement in oil refineries through flare gas recovery technique to meet the emission trading targets. Energy 109:1–12. https://doi.org/10.1016/j.energy.2016.04.080

    Article  CAS  Google Scholar 

  • Dalena F, Senatore A, Marino A et al (2018) Methanol production and applications: an overview. In: Methanol: Science and Engineering. Elsevier

    Google Scholar 

  • Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 1917. https://doi.org/10.1007/3-540-45356-3_83

  • Deshpande A, Economides MJ (2004) CNG: a competitive technology to LNG for the transport of natural gas. University of Houston

    Google Scholar 

  • Dincer I, Rosen M (2020) Exergy: energy, environment and sustainable development, Third. Elsevier

    Google Scholar 

  • Ding H, Xu Y, Luo C et al (2018) A novel composite perovskite-based material for chemical-looping steam methane reforming to hydrogen and syngas. Energy Convers Manag 171:12–19. https://doi.org/10.1016/J.ENCONMAN.2018.05.088

    Article  CAS  Google Scholar 

  • Du F, Nojabaei B (2019) A review of gas injection in shale reservoirs: enhanced Oil/Gas recovery approaches and greenhouse gas control. Energies 12. https://doi.org/10.3390/en12122355

  • Dutta A, Chit CW, Karimi IA, Farooq S (2017) Ethylene from natural gas via oxidative coupling of methane and cold energy of LNG. Computer Aided Chemical Engineering, In

    Book  Google Scholar 

  • Dwiyantoro BA, Saungweme FW (2019) Analysis of an optimum method for power generation using flare gas from oil refinery plants. In: AIP Conference Proceedings. AIP Publishing

    Google Scholar 

  • Elhagar M, El-Emam N, Awad M et al (2021) Increase flared gas recovery and emission reduction by separator optimization. Int J Energy Environ Eng 12. https://doi.org/10.1007/s40095-020-00363-z

  • Emam EA (2015) GAS flaring in industry: An overview. Pet Coal 57

  • Emamdoust A, La Parola V, Pantaleo G et al (2020) Partial oxidation of methane over SiO2 supported Ni and NiCe catalysts. J Energy Chem 47:1–9. https://doi.org/10.1016/J.JECHEM.2019.11.019

    Article  Google Scholar 

  • Eshaghi S, Hamrang F (2021) An innovative techno-economic analysis for the selection of an integrated ejector system in the flare gas recovery of a refinery plant. Energy 228. https://doi.org/10.1016/j.energy.2021.120594

  • Evbuomwan BO, Aimikhe V, Datong JY (2018) Simulation and evaluation of a flare gas recovery unit for refineries. 5(10):775–781

  • Fallah T, Belghaieb J, Hajji N (2019) Analysis and simulation of flare gas recovery in oil and gas producing company. Energy Sources, Part A Recover Util Environ Eff. https://doi.org/10.1080/15567036.2019.1680772

  • Fiaschi D, Gamberi F, Bartlett M, Griffin T (2005) The air membrane-ATR integrated gas turbine power cycle: a method for producing electricity with low CO2 emissions. Energy Convers Manag 46:2514–2529. https://doi.org/10.1016/J.ENCONMAN.2004.11.008

    Article  CAS  Google Scholar 

  • Finko VE, Finko VV (2006) Flared gas: how to generate power and utilise combustion products for CO2 recovery. GAS Ind Russ:35–39

  • Gabriel KJ, Noureldin M, El-Halwagi MM et al (2014) Gas-to-liquid (GTL) technology: Targets for process design and water-energy nexus. Curr Opin Chem Eng 5:49–54. https://doi.org/10.1016/J.COCHE.2014.05.001

    Article  Google Scholar 

  • Gbadamosi AO, Kiwalabye J, Junin R, Augustine A (2018) A review of gas enhanced oil recovery schemes used in the North Sea. J Pet Explor Prod Technol 8:1373–1387

    Article  CAS  Google Scholar 

  • Ghorbani B, Mehrpooya M, Hamedi MH, Amidpour M (2017) Exergoeconomic analysis of integrated natural gas liquids (NGL) and liquefied natural gas (LNG) processes. Appl Therm Eng 113:1483–1495. https://doi.org/10.1016/j.applthermaleng.2016.11.142

    Article  CAS  Google Scholar 

  • Gorbyleva YA (2022) Flue Gas-Simultaneous Water and Gas (Flue Gas-SWAG) Injection for enhancing oil recovery. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing

    Google Scholar 

  • Graves C, Ebbesen SD, Mogensen M, Lackner KS (2011) Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renew Sustain Energy Rev 15:1–23. https://doi.org/10.1016/J.RSER.2010.07.014

    Article  CAS  Google Scholar 

  • Gupta KK, Rehman A, Sarviya RM (2010) Bio-fuels for the gas turbine: a review. Renew Sustain Energy Rev 14(9):2946–2955

    Article  CAS  Google Scholar 

  • Hajizadeh A, Mohamadi-Baghmolaei M, Azin R et al (2018) Technical and economic evaluation of flare gas recovery in a giant gas refinery. Chem Eng Res Des 131. https://doi.org/10.1016/j.cherd.2017.11.026

  • Hamidzadeh Z, Sattari S, Soltanieh M, Vatani A (2020) Development of a multi-objective decision-making model to recover flare gases in a multi flare gases zone. Energy 203. https://doi.org/10.1016/j.energy.2020.117815

  • He T, Karimi IA, Ju Y (2018) Review on the design and optimization of natural gas liquefaction processes for onshore and offshore applications. Chem Eng Res Des 132:89–114

    Article  CAS  Google Scholar 

  • Heidlage MG, Kezar EA, Snow KC, Pfromm PH (2017) Thermochemical synthesis of ammonia and syngas from natural gas at atmospheric pressure. Ind Eng Chem Res 56. https://doi.org/10.1021/acs.iecr.7b03173

  • Heimel S, Lowe C (2009) Technology comparison of CO2 capture for a gas-to-liquids plant. Energy Procedia 1:4039–4046. https://doi.org/10.1016/j.egypro.2009.02.210

    Article  CAS  Google Scholar 

  • Hossein Abbasi M, Sayyaadi H, Tahmasbzadebaie M (2018) A methodology to obtain the foremost type and optimal size of the prime mover of a CCHP system for a large-scale residential application. Appl Therm Eng 135:389–405. https://doi.org/10.1016/j.applthermaleng.2018.02.062

    Article  Google Scholar 

  • Iulianelli A, Drioli E (2020) Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications. Fuel Process Technol 206:106464

    Article  CAS  Google Scholar 

  • Jacobs T (2013) Gas-to-liquids comes of age in a world full of gas. J Pet Technol 65. https://doi.org/10.2118/0813-0068-jpt

  • Jafari M, Ashtab S, Behroozsarand A et al (2018) Plant-wide simulation of an integrated zero-emission process to convert flare gas to gasoline. Gas Process J 6(1):1–20

    Google Scholar 

  • Jafari M, Nezhadfard M, Garakani AK, Student PD (2021) Simulation and economic analysis of combined water desalination and power generation from associated gases of Cheshmeh Khosh. Iran J Oil Gas Sci Technol 10(1):1–4

    CAS  Google Scholar 

  • Jalali A, Lotfi M, Zilabi S, Mohammadi AH (2020) Recovery enhancement of liquid hydrocarbons in dew point control unit of natural gas processing plant. Sep Sci Technol 55. https://doi.org/10.1080/01496395.2019.1591450

  • Jaluria Y (2007) Design and optimization of thermal systems, 2nd edn. CRC Press

    Book  Google Scholar 

  • Jarvis SM, Samsatli S (2018) Technologies and infrastructures underpinning future CO2 value chains: a comprehensive review and comparative analysis. Renew Sustain Energy Rev 85:46–68. https://doi.org/10.1016/J.RSER.2018.01.007

    Article  CAS  Google Scholar 

  • Jassim MS (2016) Sensitivity analyses and optimization of a gas sweetening plant for hydrogen sulfide and carbon dioxide capture using methyldiethanolamine solutions. J Nat Gas Sci Eng 36. https://doi.org/10.1016/j.jngse.2016.10.012

  • Johnson MR, Coderre AR (2012) Opportunities for CO2 equivalent emissions reductions via flare and vent mitigation: a case study for Alberta, Canada. Int J Greenh Gas Control 8:121–131

    Article  CAS  Google Scholar 

  • Kafrudi IG, Amini M, Ayazi M (2016) Determine the potential and estimate the GHG emissions in gas refinery. In: In Second International Conference in New Research on Chemistry & Chemical engineering, Tehran

  • Kang JY, Kang DW, Kim TS, Hur KB (2014) Economic evaluation of biogas and natural gas co-firing in gas turbine combined heat and power systems. Appl Therm Eng 70:723–731. https://doi.org/10.1016/j.applthermaleng.2014.05.085

    Article  Google Scholar 

  • Kerunwa A, Toochukwu Ekwueme S, Julian Obibuike U (2020) Utilization of stranded associated flare gases for electricity generation in situ through gas-to-wire in the Niger Delta. Int J Oil, Gas Coal Eng 8. https://doi.org/10.11648/j.ogce.20200801.15

  • Khalili-Garakani A, Iravaninia M, Nezhadfard M (2021) A review on the potentials of flare gas recovery applications in Iran. J Clean Prod 279:123345. https://doi.org/10.1016/J.JCLEPRO.2020.123345

    Article  CAS  Google Scholar 

  • Khalili-Garakani A, Nezhadfard M, Iravaninia M (2022) Enviro-economic investigation of various flare gas recovery and utilization technologies in upstream and downstream of oil and gas industries. J Clean Prod 346. https://doi.org/10.1016/j.jclepro.2022.131218

  • Khan MS, Karimi IA, Wood DA (2017) Retrospective and future perspective of natural gas liquefaction and optimization technologies contributing to efficient LNG supply: a review. J Nat Gas Sci Eng 45:165–188

    Article  Google Scholar 

  • Khanipour M, Mirvakili A, Bakhtyari A et al (2020) A membrane-assisted hydrogen and carbon oxides separation from flare gas and recovery to a commercial methanol reactor. Int J Hydrogen Energy 45. https://doi.org/10.1016/j.ijhydene.2019.04.149

  • Khanmohammadi S, Atashkari K, Kouhikamali R (2015) Exergoeconomic multi-objective optimization of an externally fired gas turbine integrated with a biomass gasifier. Appl Therm Eng 91:848–859. https://doi.org/10.1016/j.applthermaleng.2015.08.080

    Article  CAS  Google Scholar 

  • Khoja AH, Tahir M, Amin NAS (2018) Cold plasma dielectric barrier discharge reactor for dry reforming of methane over Ni/ɤ-Al2O3-MgO nanocomposite. Fuel Process Technol 178:166–179. https://doi.org/10.1016/J.FUPROC.2018.05.030

    Article  CAS  Google Scholar 

  • Khoja AH, Tahir M, Amin NAS et al (2020) Kinetic study of dry reforming of methane using hybrid DBD plasma reactor over La2O3 co-supported Ni/MgAl2O4 catalyst. Int J Hydrogen Energy 45:12256–12271. https://doi.org/10.1016/J.IJHYDENE.2020.02.200

    Article  CAS  Google Scholar 

  • Khoja AH, Tahir M, Saidina Amin NA (2019) Evaluating the performance of a Ni catalyst supported on La2O3-MgAl2O4 for dry reforming of methane in a packed bed dielectric barrier discharge plasma reactor. Energy and Fuels 33. https://doi.org/10.1021/acs.energyfuels.9b02236

  • Lawal KA, Ovuru MI, Eyitayo SI et al (2017) Underground storage as a solution for stranded associated gas in oil fields. J Pet Sci Eng 150:366–375

    Article  CAS  Google Scholar 

  • Lee I, Park J, Moon I (2018) Key issues and challenges on the liquefied natural gas value chain: a review from the process systems engineering point of view. Ind Eng Chem Res 57:5805–5818

    Article  CAS  Google Scholar 

  • Leonzio G (2018) Methanol synthesis: optimal solution for a better efficiency of the process. Processes 6. https://doi.org/10.3390/pr6030020

  • Liang CZ, Chung TS, Lai JY (2019) A review of polymeric composite membranes for gas separation and energy production. Prog Polym Sci 97:101141

    Article  CAS  Google Scholar 

  • Liobikienė G, Butkus M (2017) The European Union possibilities to achieve targets of Europe 2020 and Paris agreement climate policy. Renew Energy 106:298–309

    Article  Google Scholar 

  • Litvinenko V, Meyer B (2017) Syngas production: status and potential for implementation in Russian Industry

  • Liu D, Quek XY, Wah HHA et al (2009) Carbon dioxide reforming of methane over nickel-grafted SBA-15 and MCM-41 catalysts. Catal Today 148:243–250. https://doi.org/10.1016/J.CATTOD.2009.08.014

    Article  CAS  Google Scholar 

  • Lu S, Shi Y, Meng N et al (2020) Electrosynthesis of Syngas via the Co-Reduction of CO2 and H2O. Cell Reports Phys Sci 1:100237. https://doi.org/10.1016/J.XCRP.2020.100237

    Article  Google Scholar 

  • Ma Z, Trevisanut C, Neagoe C et al (2016) A micro-refinery to reduce associated natural gas flaring. Sustain Cities Soc 27:116–121

    Article  Google Scholar 

  • Mansoor R, Tahir M (2021) Recent Developments in Natural Gas Flaring Reduction and Reformation to Energy-Efficient Fuels: A Review. Energy and Fuels 35. https://doi.org/10.1021/acs.energyfuels.0c04269

  • Maqbool W, Park SJ, Lee ES (2014) Gas-to-liquid process optimization for different recycling configurations and economic evaluation. Ind Eng Chem Res 53. https://doi.org/10.1021/ie500616j

  • Matus EV, Ismagilov IZ, Yashnik SA et al (2020) Hydrogen production through autothermal reforming of CH4: Efficiency and action mode of noble (M = Pt, Pd) and non-noble (M = Re, Mo, Sn) metal additives in the composition of Ni-M/Ce0.5Zr0.5O2/Al2O3 catalysts. Int J Hydrogen Energy 45:33352–33369. https://doi.org/10.1016/J.IJHYDENE.2020.09.011

    Article  CAS  Google Scholar 

  • Mazumder M, Chen L, Xu Q (2020) Integrated Ejector-Based Flare Gas Recovery and On-Site Desalination of Produced Water in Shale Gas Production. Chem Eng Technol 43. https://doi.org/10.1002/ceat.201900350

  • Mohammadi Dinani A, Nassaji A, Hamzehlouyan T (2022) An optimized economic-environmental model for a proposed flare gas recovery system. J Nat Gas Sci Eng 9:2921–2934. https://doi.org/10.1016/j.egyr.2023.01.103

    Article  Google Scholar 

  • Mokhatab S, Poe WA, Mak JY (2018) Handbook of natural gas transmission and processing: Principles and practices. Gulf professional publishing

    Google Scholar 

  • Jafari M, Deljoo MS, Vatani A (2020) Simulation and Economic Evaluation of Polygeneration System for Coproduction of Power, Steam, CH3OH, H2, and CO2 from Flare Gas. Iran J Oil Gas Sci Technol 9:93–114

    Google Scholar 

  • Mousavi SM, Lari K, Salehi G, Torabi Azad M (2020) Technical, economic, and environmental assessment of flare gas recovery system: a case study. Energy Sources, Part A Recover Util Environ Eff. https://doi.org/10.1080/15567036.2020.1737597

  • Ndunagu PU, Joel OF, Akuma O, Alaike EE (2022) Production of Natural Gas and Liquefied Petroleum Gas from Flare Gas using Methanol Based Process. Niger J Technol Dev 19:60–67. https://doi.org/10.4314/njtd.v19i1.7

    Article  Google Scholar 

  • Negri C, Ricci M, Zilio M et al (2020) Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review. Renew Sustain Energy Rev 133:110138. https://doi.org/10.1016/j.rser.2020.110138

    Article  CAS  Google Scholar 

  • Nezhadfard M, Khalili-Garakani A (2020) Power generation as a useful option for flare gas recovery: Enviro-economic evaluation of different scenarios. Energy 204. https://doi.org/10.1016/j.energy.2020.117940

  • Núñez-López V, Moskal E (2019) Potential of CO2-EOR for Near-Term Decarbonization. Front Clim 1:5

    Article  Google Scholar 

  • Nunez C (2019) Causes and effects of climate change. Natl Geogr Disponível em https://www.Natlcom/environment/global-warming/global-warming-overview

    Google Scholar 

  • Ojijiagwo E, Oduoza CF, Emekwuru N (2016) Economics of gas to wire technology applied in gas flare management. Eng Sci Technol an Int J 19. https://doi.org/10.1016/j.jestch.2016.09.012

  • Ojijiagwo EN (2017) Development of a sustainable framework to manage flare gas in an oil and gas environment: a case study of Nigeria. Int J Acad Res Bus Soc Sci 21

  • Ortiz M, De Diego LF, Abad A et al (2012) Catalytic activity of ni-based oxygen-carriers for steam methane reforming in chemical-looping processes. Energy Fuels 26. https://doi.org/10.1021/ef2013612

  • Pal M, Bjarke Pedersen R, Furqan Gilani S, Tarsauliya G (2018) Challenges and learnings from operating the largest off-shore WAG in the giant al-shaheen field and ways to optimize future WAG developments. In: Society of Petroleum Engineers - SPE EOR Conference at Oil and Gas West Asia 2018. SPE

    Google Scholar 

  • Palma V, Meloni E, Ruocco C et al (2018) State of the Art of Conventional Reactors for Methanol Production. In: Methanol: Science and Engineering. Elsevier

    Google Scholar 

  • Parivazh MM, Mousavi M, Naderi M et al (2022) The Feasibility Study, Exergy, and Exergoeconomic Analyses of a Novel Flare Gas Recovery System. Sustain 14:9612. https://doi.org/10.3390/su14159612

    Article  Google Scholar 

  • Park JH, Khan MS, Andika R et al (2015) Techno-economic evaluation of a novel NGL recovery scheme with nine patented schemes for offshore applications. J Nat Gas Sci Eng 27. https://doi.org/10.1016/j.jngse.2014.12.023

  • Pasel J, Samsun RC, Meißner J et al (2020) Recent advances in diesel autothermal reformer design. Int J Hydrogen Energy 45:2279–2288. https://doi.org/10.1016/J.IJHYDENE.2019.11.137

    Article  CAS  Google Scholar 

  • Pei P, Laudal D, Nasah J et al (2015) Utilization of aquifer storage in flare gas reduction. J Nat Gas Sci Eng 27:1100–1108

    Article  CAS  Google Scholar 

  • Pham TN, Khan MS, Minh LQ et al (2016) Optimization of modified single mixed refrigerant process of natural gas liquefaction using multivariate Coggin’s algorithm combined with process knowledge. J Nat Gas Sci Eng 33. https://doi.org/10.1016/j.jngse.2016.06.006

  • Pourhassan S, Taravat A (2014) Effect of gas flaring on environmental variables in developing countries. Int J Bus Manag 2:101–106

    Google Scholar 

  • Qazvini OT, Babarao R, Shi ZL et al (2019) A Robust Ethane-Trapping Metal-Organic Framework with a High Capacity for Ethylene Purification. J Am Chem Soc 141. https://doi.org/10.1021/jacs.9b00913

  • Quale EA, Crapez B, Stensen JA, Berge LI (2000) SWAG injection on the Siri Field - an optimized injection system for less cost. In: Proceedings of the European Petroleum Conference. SPE

    Google Scholar 

  • Qyyum MA, Naquash A, Haider J, et al (2022) State-of-the-art assessment of natural gas liquids recovery processes: Techno-economic evaluation, policy implications, open issues, and the way forward. Energy 238 121684

  • Qyyum MA, Qadeer K, Lee M (2018) Comprehensive Review of the Design Optimization of Natural Gas Liquefaction Processes: Current Status and Perspectives. Ind Eng Chem Res 57:5819–5584

    Article  CAS  Google Scholar 

  • Rahimpour MR, Jamshidnejad Z, Jokar SM et al (2012) A comparative study of three different methods for flare gas recovery of Asalooye Gas Refinery. J Nat Gas Sci Eng 4:17–28

    Article  CAS  Google Scholar 

  • Rahimpour MR, Jokar SM (2012) Feasibility of flare gas reformation to practical energy in Farashband gas refinery: No gas flaring. J Hazard Mater 209:204–217

    Article  Google Scholar 

  • Rajović V, Kiss F, Maravić N, Bera O (2016) Environmental flows and life cycle assessment of associated petroleum gas utilization via combined heat and power plants and heat boilers at oil fields. Energy Convers Manag 118:96–104. https://doi.org/10.1016/j.enconman.2016.03.084

    Article  CAS  Google Scholar 

  • Rezaie A, Tsatsaronis G, Hellwig U (2019) Thermal design and optimization of a heat recovery steam generator in a combined-cycle power plant by applying a genetic algorithm. Energy 168:346–357. https://doi.org/10.1016/j.energy.2018.11.047

    Article  Google Scholar 

  • Rosner F, Chen Q, Rao A, Samuelsen S (2019) Thermo-economic analyses of concepts for increasing carbon capture in high-methane Syngas integrated gasification combined cycle power plants. Energy Convers Manag 199:112020. https://doi.org/10.1016/J.ENCONMAN.2019.112020

    Article  CAS  Google Scholar 

  • Saidi M (2018) Application of catalytic membrane reactor for pure hydrogen production by flare gas recovery as a novel approach. Int J Hydrogen Energy 43. https://doi.org/10.1016/j.ijhydene.2018.05.156

  • Saidi M, Siavashi F, Rahimpour MR (2014) Application of solid oxide fuel cell for flare gas recovery as a new approach; a case study for Asalouyeh gas processing plant. Iran. J Nat Gas Sci Eng 17. https://doi.org/10.1016/j.jngse.2013.12.005

  • Samba MA, Aldokali I, Elsharaf MO (2019) A New EOR Technology: Gas Alternating Gas Injection. J Earth Energy Eng 8. https://doi.org/10.25299/jeee.2019.vol8(1).2354

  • Samba MA, Elsharafi MO (2018) Literature Review of Water Alternation Gas Injection. J Earth Energy Eng 7. https://doi.org/10.25299/jeee.2018.vol7(2).2117

  • Sarkari M, Jamshidi B, Ahmadi Khoshooei M, Fazlollahi F (2022) Flare gas reduction: A case study of integrating regeneration gas in flash gas compression network. Fuel 318. https://doi.org/10.1016/j.fuel.2022.123661

  • Selvarajah K, Phuc NHH, Abdullah B et al (2016) Syngas production from methane dry reforming over Ni/Al2O3 catalyst. Res Chem Intermed 42. https://doi.org/10.1007/s11164-015-2395-5

  • Shahata W, Abd Ellatif SG, Shehata WM, Gad FK (2018) Flare gas recovery for remote oil production facilities. Trans Egypt Soc Chem Eng 44

  • Shayan M, Pirouzfar V, Sakhaeinia H (2020) Technological and economical analysis of flare recovery methods, and comparison of different steam and power generation systems. J Therm Anal Calorim 139. https://doi.org/10.1007/s10973-019-08429-9

  • Shehata WM, Khalifa Gad F, Galal Helal M (2022) Flare gas recovery from an existing oil plant using gas compressors. J Univ Shanghai Sci Technol 24:61–71. https://doi.org/10.51201/jusst/21/121061

    Article  Google Scholar 

  • Sheng JJ (2015) Enhanced oil recovery in shale reservoirs by gas injection. J Nat Gas Sci Eng 22:252–259

    Article  Google Scholar 

  • Singh OK (2016) Performance enhancement of combined cycle power plant using inlet air cooling by exhaust heat operated ammonia-water absorption refrigeration system. Appl Energy 180:867–879. https://doi.org/10.1016/j.apenergy.2016.08.042

    Article  CAS  Google Scholar 

  • Sleiti AK, Al-Ammari WA, Aboueata KM (2022) Flare gas-to-power by direct intercooled oxy-combustion supercritical CO2 power cycles. Fuel 308. https://doi.org/10.1016/j.fuel.2021.121808

  • Soliman MA, Salu SA, Al-Aiderous AY et al (2021) Unconventional waste & flare gas recovery system UFGRS in new circular economy. In: Society of Petroleum Engineers - Abu Dhabi International Petroleum Exhibition and Conference, ADIP 2021. OnePetro

    Google Scholar 

  • Speight JG (2019) Handbook of industrial hydrocarbon processes. Gulf Professional Publishing

    Google Scholar 

  • Speight JG (2018) Natural gas: A basic handbook Gulf Professional Publishing

  • Stanley Toochukwu E, Nkemakolam Chinedu I, Ubanozie Julian O et al (2019) Economics of Gas-to-Liquids (GTL) Plants. Pet Sci Eng 3. https://doi.org/10.11648/j.pse.20190302.17

  • Taheri Z, Shabani MR, Nazari K, Mehdizaheh A (2014) Natural gas transportation and storage by hydrate technology: Iran case study. J Nat Gas Sci Eng 21. https://doi.org/10.1016/j.jngse.2014.09.026

  • Tahir M, Mulewa W, Amin NAS, Zakaria ZY (2017) Thermodynamic and experimental analysis on ethanol steam reforming for hydrogen production over Ni-modified TiO2/MMT nanoclay catalyst. Energy Convers Manag 154:25–37. https://doi.org/10.1016/J.ENCONMAN.2017.10.042

    Article  CAS  Google Scholar 

  • Tahir M, Tahir B, Zakaria ZY, Muhammad A (2019) Enhanced photocatalytic carbon dioxide reforming of methane to fuels over nickel and montmorillonite supported TiO2 nanocomposite under UV-light using monolith photoreactor. J Clean Prod 213:451–461

    Article  CAS  Google Scholar 

  • Tahmasebzadehbaie M, Najafi Nobar S, Derahaki M (2019) Thermodynamic analysis of the NGL plant in a sample gas refinery and problem solving by designing an absorption chiller. Appl Therm Eng 159:113963. https://doi.org/10.1016/j.applthermaleng.2019.113963

    Article  CAS  Google Scholar 

  • Tahmasebzadehbaie M, Sayyaadi H (2021) Regional management of flare gas recovery based on water-energy-environment nexus considering the reliability of the downstream installations. Energy Convers Manag 239. https://doi.org/10.1016/j.enconman.2021.114189

  • Tahmasebzadehbaie M, Sayyaadi H (2022) Technoeconomical, environmental, and reliability assessment of different flare gas recovery technologies. J Clean Prod 367:133009. https://doi.org/10.1016/J.JCLEPRO.2022.133009

    Article  CAS  Google Scholar 

  • Tan ECD, Schuetzle D, Zhang Y et al (2018) Reduction of greenhouse gas and criteria pollutant emissions by direct conversion of associated flare gas to synthetic fuels at oil wellheads. Int J Energy Environ Eng 9:305–321. https://doi.org/10.1007/s40095-018-0273-9

    Article  CAS  Google Scholar 

  • Tan XM, Rodrigue D (2019) A review on porous polymeric membrane preparation. Part I: Production techniques with polysulfone and poly (vinylidene fluoride). Polymers (Basel) 11:1160

    Article  Google Scholar 

  • Tavallaei M, Farzaneh-Gord M, Moghadam AJ (2022) 4E analysis and thermodynamic optimization of flaring associated gas recovery using external firing recuperative gas turbine. Energy Convers Manag 266:115836. https://doi.org/10.1016/J.ENCONMAN.2022.115836

    Article  Google Scholar 

  • Tavasoli A, Ozin G (2018) Green Syngas by Solar Dry Reforming. Joule 2(4):571–575

    Article  Google Scholar 

  • Thomas S (2008) Enhanced oil recovery-an overview enhanced oil recovery-an overview molecular structures of heavy oils and coal liquefaction products structure moléculaire des huiles lourdes et produits de liquéfaction du charbon. Oil Gas Sci Technol IFP 63(1):9–19

    Article  CAS  Google Scholar 

  • Tunio SQ, Chandio TA, Memon MK (2012) Comparative study of FAWAG and SWAG as an effective EOR technique for a Malaysian field. Res J Appl Sci Eng Technol 4(6):645–648

    Google Scholar 

  • Uskov SI, Potemkin DI, Shigarov AB et al (2019) Low-temperature steam conversion of flare gases for various applications. Chem Eng J 368. https://doi.org/10.1016/j.cej.2019.02.189

  • Vahabpour A, Shojaee SM, Tahmasebzadeh M, Rasouli F (2018) A study on environmental effects of gas flaring in iran and its role for the country’s commitments in Paris Agreement. Strateg Stud public policy 8:133–154

    Google Scholar 

  • Verbitsky VS, Igrevsky LV, Fedorov AE et al (2016) Technology design of efficient utilization of associated petroleum gas apg and possibilities of its realization by pump-booster and pump-ejector systems. In: Society of Petroleum Engineers - SPE Russian Petroleum Technology Conference and Exhibition 2016. SPE

    Google Scholar 

  • Wang H, Liu Y, Li J (2020) Designer metal–organic frameworks for size-exclusion-based hydrocarbon separations: progress and challenges. Adv Mater 32:2002603

    Article  CAS  Google Scholar 

  • Wang ZH, Sun BW, Guo P et al (2021) Investigation of flue gas water-alternating gas (flue gas–WAG) injection for enhanced oil recovery and multicomponent flue gas storage in the post-waterflooding reservoir. Pet Sci 18. https://doi.org/10.1007/s12182-021-00548-z

  • Xu X, Liu Y, Zhang F et al (2017) Clean coal technologies in China based on methanol platform. Catal Today 298:61–68. https://doi.org/10.1016/J.CATTOD.2017.05.070

    Article  CAS  Google Scholar 

  • Xu Y, Dinh H, Xu Q et al (2020) Flare minimization for an olefin plant shutdown via plant-wide dynamic simulation. J Clean Prod 254. https://doi.org/10.1016/j.jclepro.2020.120129

  • Yang Y, Burke N, Ali S et al (2017) Experimental studies of hydrocarbon separation on zeolites, activated carbons and MOFs for applications in natural gas processing. RSC Adv 7. https://doi.org/10.1039/c6ra25509d

  • Yazdani E, Asadi J, Dehaghani YH, Kazempoor P (2020) Flare gas recovery by liquid ring compressors-system design and simulation. J Nat Gas Sci Eng 84. https://doi.org/10.1016/j.jngse.2020.103627

  • Yong WF, Zhang H (2021) Recent advances in polymer blend membranes for gas separation and pervaporation. Prog. Mater, Sci, p 116

    Google Scholar 

  • Yoon S, Binns M, Park S, Kim JK (2017) Development of energy-efficient processes for natural gas liquids recovery. Energy 128. https://doi.org/10.1016/j.energy.2017.04.049

  • Zaresharif M, Vatani A, Ghasemian M (2022) Evaluation of different flare gas recovery alternatives with exergy and exergoeconomic analyses. Arab J Sci Eng 47. https://doi.org/10.1007/s13369-021-05485-y

  • Zhang J, Meerman H, Benders R, Faaij A (2020a) Comprehensive review of current natural gas liquefaction processes on technical and economic performance. Appl Therm Eng 166:114736

    Article  Google Scholar 

  • Zhang J, Meerman H, Benders R, Faaij A (2020b) Technical and economic optimization of expander-based small-scale natural gas liquefaction processes with absorption precooling cycle. Energy 191. https://doi.org/10.1016/j.energy.2019.116592

  • Zhang R, Cao Y, Li H et al (2020c) The role of CuO modified La0·7Sr0·3FeO3 perovskite on intermediate-temperature partial oxidation of methane via chemical looping scheme. Int J Hydrogen Energy 45:4073–4083. https://doi.org/10.1016/J.IJHYDENE.2019.12.082

    Article  CAS  Google Scholar 

  • Zhou Q, Zhong X, Xie X et al (2020) Auto-thermal reforming of acetic acid for hydrogen production by ordered mesoporous Ni-xSm-Al-O catalysts: effect of samarium promotion. Renew Energy 145:2316–2326. https://doi.org/10.1016/J.RENENE.2019.07.078

    Article  CAS  Google Scholar 

  • Zolfaghari M, Pirouzfar V, Sakhaeinia H (2017) Technical characterization and economic evaluation of recovery of flare gas in various gas-processing plants. Energy 124:481–491

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ahmed M. Elgarahy: Conceptualization, Visualization Investigation, Data curation, and Writing original draft.

Ahmed Hammad: Investigation, Visualization, Data curation, and Writing original draft.

Moustafa Shehata: Investigation, Data curation, and Writing original draft.

Amir Ayad: Investigation, Data curation, and Writing original draft.

Mohamed El-Qelish: Investigation, Visualization, Data curation, and Writing original draft.

Khalid Z. Elwakeel: Writing-review and editing.

Ali Maged: Data curation, Visualization Investigation, Writing original draft, and Writing-review & editing.

Corresponding author

Correspondence to Khalid Z. Elwakeel.

Ethics declarations

Ethical approval

Not applicable

Consent to participate

Not applicable

Consent to publish

Not applicable

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elgarahy, A.M., Hammad, A., Shehata, M. et al. Reliable sustainable management strategies for flare gas recovery: technical, environmental, modeling, and economic assessment: a comprehensive review. Environ Sci Pollut Res 31, 27566–27608 (2024). https://doi.org/10.1007/s11356-024-32864-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-32864-3

Keywords

Navigation