Skip to main content

Advertisement

Log in

A linear active disturbance rejection control technique for frequency control of networked microgrids

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

In this paper, the load frequency control (LFC) for networked microgrids in the presence of delayed electric vehicles (EVs) aggregator and renewable energy sources (RESs) like photovoltaic, wind turbine and fuel cell have been investigated. A linear active disturbance rejection control (LADRC) technique based on the extended state observer (ESO) and nonlinear feedback control law (NLFCL) is proposed to eliminate the frequency variations resulted from the load disturbance and uncertainty of RESs. Since the LADRC parameters could be designed by the ESO and controller bandwidths, the presented controller could have similar performance with the fixed-structured controller. Also, the IMC technique is used for the robust tuning of the LADRC controller. The simulation is carried out on the three-area LFC scheme containing EVs aggregator, RESs, and fuel cell. According to simulation results, the LADRC controller has fewer frequency variations in contrast to other methods presented in the case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

Abbreviations

EV:

Electric vehicles

ESO:

Extended state observer

ESS:

Energy storage system

FC:

Fuel cell

IAE:

Integral absolute error

ITAE:

Integral time absolute error

LADRC:

Linear active disturbance rejection control

LFC:

Load frequency control

MPC:

Model predictive control

NMGs:

Networked microgrids

NLFCL:

Nonlinear feedback control law

PV:

Photovoltaic panel

RESs:

Renewable energy sources

SMC:

Sliding mode control

WT:

Wind turbine

K EV :

EV Battery gain

K WT :

Wind turbine gain

K PV :

Photovoltaic panel gain

K ESS :

Energy storage system gain

K FC :

Fuel cell gain

K b :

Frequency bias factor

F p :

Fraction of total turbine power

T FC :

Fuel cell time constant

\({\omega }_{o}\) :

Observer bandwidth

M :

Inertia constant

D :

Load-damping factor

R :

Speed regulation

T g :

Governor time constant

T c :

Turbine time constant

T r :

Reheat time constant

T EV :

EV Battery time constant

T WT :

Wind turbine time constant

T PV :

Photovoltaic panel time constant

T ESS :

Energy storage system time constant

\({\Delta P}_{FC}\) :

Fuel cell power variation

\(\Delta f\) :

Frequency variation

\({\Delta P}_{g}\) :

Generator output power variation

\({\Delta P}_{ESS}\) :

Energy storage system power variation

\({\Delta P}_{PV}\) :

Photovoltaic power variation

\({\Delta P}_{WT}\) :

Wind power variation

\({\Delta P}_{m}\) :

Mechanical output power variation

\({\Delta P}_{EV}\) :

EV aggregator power variation

b :

High-frequency gain of controlled system

d :

Total disturbance

u :

Input signal

L o :

Observer gain vector

K o :

Controller gain

\({\omega }_{c}\) :

Controller bandwidth

References

  1. Safari, A., Babaei, F., Farrokhifar, M.: A load frequency control using a PSO-based ANN for micro-grids in the presence of electric vehicles. Int. J. Ambient Energy 42, 688–700 (2021)

    Article  Google Scholar 

  2. Bevrani, H., Habibi, F., Babahajyani, P., Watanabe, M., Mitani, Y.: Intelligent frequency control in an AC microgrid: online PSO-based fuzzy tuning approach. IEEE Trans. Smart Grid 3, 1935–1944 (2012)

    Article  Google Scholar 

  3. Sahu, R.K., Panda, S., Biswal, A., Sekhar, G.C.: Design and analysis of tilt integral derivative controller with filter for load frequency control of multi-area interconnected power systems. ISA Trans. 61, 251–264 (2016)

    Article  Google Scholar 

  4. Dhillon, S.S., Lather, J.S., Marwaha, S.: Multi objective load frequency control using hybrid bacterial foraging and particle swarm optimized PI controller. Int. J. Electr. Power 79, 196–209 (2016)

    Article  Google Scholar 

  5. Khooban, M.H., Niknam, T., Shasadeghi, M., Dragicevic, T., Blaabjerg, F.: Load frequency control in microgrids based on a stochastic noninteger controller. IEEE Trans. Sustain. Energy 9, 853–861 (2017)

    Article  Google Scholar 

  6. Saha, A., Saikia, L.C.: Utilisation of ultra-capacitor in load frequency control under restructured STPP-thermal power systems using WOA optimised PIDN-FOPD controller. IET Gener. Transm. Distrib. 11, 3318–3331 (2017)

    Article  Google Scholar 

  7. Aziz, S., Wang, H., Liu, Y., Peng, J., Jiang, H.: Variable universe fuzzy logic-based hybrid LFC control with real-time implementation. IEEE Access 7, 25535–25546 (2019)

    Article  Google Scholar 

  8. Chuang, N.: Robust H∞ load-frequency control in interconnected power systems. IET Control Theory Appl. 10, 67–75 (2016)

    Article  MathSciNet  Google Scholar 

  9. Peng, C., Zhang, J., Yan, H.: Adaptive event-triggering H load frequency control for network-based power systems. IEEE Trans. Ind. Electron. 65, 1685–1694 (2017)

    Article  Google Scholar 

  10. Bevrani, H., Feizi, M.R., Ataee, S.: Robust frequency control in an islanded microgrid: H and μ-synthesis approaches. IEEE Trans. Smart Grid 7, 706–717 (2015)

    Google Scholar 

  11. Wen, S., Yu, X., Zeng, Z., Wang, J.: Event-triggering load frequency control for multiarea power systems with communication delays. IEEE Trans. Ind. Electron. 63, 1308–1317 (2015)

    Article  Google Scholar 

  12. Mi, Y., Fu, Y., Li, D., Wang, C., Loh, P.C., Wang, P.: The sliding mode load frequency control for hybrid power system based on disturbance observer. Int. J. Electr. Power 74, 446–452 (2016)

    Article  Google Scholar 

  13. Cui, Y., Xu, L., Fei, M., Shen, Y.: Observer based robust integral sliding mode load frequency control for wind power systems. Control Eng. Pract. 65, 1–10 (2017)

    Article  Google Scholar 

  14. Liao, K., Xu, Y.: A robust load frequency control scheme for power systems based on second-order sliding mode and extended disturbance observer. IEEE Trans Ind. Inform. 14, 3076–3086 (2017)

    Article  Google Scholar 

  15. Sarkar, M.K., Dev, A., Asthana, P., Narzary, D.: Chattering free robust adaptive integral higher order sliding mode control for load frequency problems in multi-area power systems. IET Control Theory Appl. 12, 1216–1227 (2018)

    Article  MathSciNet  Google Scholar 

  16. Li, H., Wang, X., Xiao, J.: Adaptive event-triggered load frequency control for interconnected microgrids by observer-based sliding mode control. IEEE Access 7, 68271–68280 (2019)

    Article  Google Scholar 

  17. Torabi-Farsani, K., Asemani, M.H., Badfar, F., Vafamand, N., Khooban, M.H.: Robust mixed μ-synthesis frequency regulation in AC mobile power grids. IEEE Trans. Transp. Electr. 5, 1182–1189 (2019)

    Article  Google Scholar 

  18. Banis, F., Guericke, D., Madsen, H., Poulsen, N.K.: Load–frequency control in microgrids using target-adjusted MPC. IET Renew. Power Gener. 14, 118–124 (2019)

    Article  Google Scholar 

  19. Dahab, Y.A., Abubakr, H., Mohamed, T.H.: Adaptive load frequency control of power systems using electro-search optimization supported by the balloon effect. IEEE Access. 8, 7408–7422 (2020)

    Article  Google Scholar 

  20. Babaei, F., Safari, A.: SCA based fractional-order PID controller considering delayed EV aggregators. JOAPE 8, 75–85 (2020)

    Google Scholar 

  21. Khooban, M.H., Niknam, T., Blaabjerg, F., Davari, P., Dragicevic, T.: A robust adaptive load frequency control for micro-grids. ISA Trans. 65, 220–229 (2017)

    Article  Google Scholar 

  22. Babaei, F., Safari, A., Salehi, J.: Evaluation of delays-based stability of LFC systems in the presence of electric vehicles aggregator. J Oper Autom Power Eng 10, 165–174 (2021)

    Google Scholar 

  23. Babaei, F., Lashkari, Z.B., Safari, A., Farrokhifar, M., Saleh, J.: SSA based fractional-order PID controller for LFC systems in the presence of delayed EV aggregators. IET Electr. Syst. 10, 259–267 (2020)

    Article  Google Scholar 

  24. Chen, W., Tan, W.: Load frequency control for power systems with wind turbines. In: Proceedings of the 33rd Chinese Control Conference, Nanjing, pp. 4277–4282 (2014)

  25. Annamraju, A., Nandiraju, S.: Robust frequency control in an autonomous microgrid: a two-stage adaptive fuzzy approach. Electr. Power Compon. Syst. 46, 83–94 (2018)

    Article  Google Scholar 

  26. Safari, A., Shahsavari, H., Babaei, F.: Optimal design of controllers for power network connected sofc using of multi-objective PSO. Serb. J. Electr. Eng. 15, 145–163 (2018)

    Article  Google Scholar 

  27. Chen, S., Chen, Z.: On active disturbance rejection control for a class of uncertain systems with measurement uncertainty. IEEE Trans. Ind. Electron. 68, 1475–1485 (2020)

    Article  Google Scholar 

  28. Tan, W., Xu, J.: Damping of low-frequency oscillations via active disturbance rejection control. Electr. Power Compon. Syst. 49, 233–245 (2021)

    Article  Google Scholar 

  29. Garpinger, O., Hägglund, T., Åström, K.J.: Performance and robustness trade-offs in PID control. J. Process Control 24, 568–577 (2014)

    Article  Google Scholar 

  30. Fu, C., Tan, W.: Decentralised load frequency control for power systems with communication delays via active disturbance rejection. IET Gener. Transm. Distrib. 12(6), 1397–1403 (2018)

    Article  Google Scholar 

  31. Ali, H.H., Kassem, A.M., Al-Dhaifallah, M., Fathy, A.: Multi-verse optimizer for model predictive load frequency control of hybrid multi-interconnected plants comprising renewable energy. IEEE Access 8, 114623–114642 (2020)

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

FB: methodology, software, formal analysis, validation, writing—original draft preparation; NT: validation, writing—review and editing, supervision, formal analysis; AS: validation, writing—review and editing, supervision, formal analysis.

Corresponding author

Correspondence to Navid Taghizadegan.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 3.

Table 3 The LFC system parameters

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghizadegan, N., Babaei, F. & Safari, A. A linear active disturbance rejection control technique for frequency control of networked microgrids. Energy Syst 15, 807–826 (2024). https://doi.org/10.1007/s12667-023-00563-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-023-00563-6

Keywords

Navigation