Skip to main content
Log in

Simulation methods for stochastic storage problems: a statistical learning perspective

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

We consider solution of stochastic storage problems through regression Monte Carlo methods. Taking a statistical learning perspective, we develop the dynamic emulation algorithm (DEA) that unifies the different existing approaches in a single modular template. We then investigate the two central aspects of regression architecture and experimental design that constitute DEA. For the regression piece, we discuss various non-parametric approaches, in particular introducing the use of Gaussian process regression in the context of stochastic storage. For simulation design, we compare the performance of traditional design (grid discretization), against space-filling, and several adaptive alternatives. The overall DEA template is illustrated with multiple examples drawing from natural gas storage valuation and optimal control of back-up generator in a microgrid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alais, J.C., Carpentier, P., De Lara, M.: Multi-usage hydropower single dam management: chance-constrained optimization and stochastic viability. Energy Syst. 8(1), 7–30 (2017)

    Article  Google Scholar 

  2. Alasseur, C., Balata, A., Ben Aziza, S., Maheshwari, A., Tankov, P., Warin, X.: Regression Monte Carlo for Microgrid Management. Tech. Rep., (2018). arXiv:1802.10352

  3. Balata, A., Palczewski, J.: Regress-Later Monte Carlo for optimal control of Markov processes. Tech. Rep., (2017). arXiv:1712.09705

  4. Balata, A., Palczewski, J.: Regress-Later Monte Carlo for Optimal Inventory Control with applications in energy. Tech. Rep., (2017). arXiv:1703.06461

  5. Bäuerle, N., Riess, V.: Gas storage valuation with regime switching. Energy Syst. 7(3), 499–528 (2016)

    Article  Google Scholar 

  6. Binois, M., Gramacy, R.B., Ludkovski, M.: Practical heteroscedastic gaussian process modeling for large simulation experiments. J. Comput. Gr. Stat. 27(4), 808–821 (2018)

    Article  MathSciNet  Google Scholar 

  7. Boogert, A., de Jong, C.: Gas storage valuation using a Monte Carlo method. J. Deriv. 15(3), 81–98 (2008)

    Article  Google Scholar 

  8. Boogert, A., de Jong, C.: Gas storage valuation using a multi-factor price process. J. Energy Markets 4, 29–52 (2011)

    Article  Google Scholar 

  9. Bouchard, B., Warin, X.: Monte Carlo valuation of American options: Facts and new algorithms to improve existing methods. In: Carmona, R.A., Del Moral, P., Hu, P., Oudjane, N. (eds.) Numerical Methods in Finance: Bordeaux, June 2010, pp. 215–255. Springer, Berlin Heidelberg, Berlin, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Carmona, R., Ludkovski, M.: Valuation of energy storage: an optimal switching approach. Quant. Financ. 10(4), 359–374 (2010)

    Article  MathSciNet  Google Scholar 

  11. Chen, Z., Forsyth, P.A.: A semi-Lagrangian approach for natural gas storage valuation and optimal operation. SIAM J. Sci. Comput. 30(1), 339–368 (2008)

    Article  MathSciNet  Google Scholar 

  12. Cong, F., Oosterlee, C.: Multi-period meanvariance portfolio optimization based on Monte Carlo simulation. J. Econo. Dyn. Control 64, 23–38 (2016)

    Article  Google Scholar 

  13. Davison, M., Zhao, G.: Optimal control of two-dam hydro facility. Syst. Eng. Procedia 3, 1–12 (2012)

    Article  Google Scholar 

  14. Denault, M., Simonato, J.G., Stentoft, L.: A simulation-and-regression approach for stochastic dynamic programs with endogenous state variables. Comput. Oper. Res. 40(11), 2760–2769 (2013)

    Article  MathSciNet  Google Scholar 

  15. Egloff, D.: Monte Carlo algorithms for optimal stopping and statistical learning. Ann. Appl. Probab. 15(2), 1396–1432 (2005)

    Article  MathSciNet  Google Scholar 

  16. Egloff, D., Kohler, M., Todorovic, N.: A dynamic look-ahead monte carlo algorithm for pricing bermudan options. Ann. Appl. Probab. 17(4), 1138–1171 (2007)

    Article  MathSciNet  Google Scholar 

  17. Felix, B.J., Weber, C.: Gas storage valuation applying numerically constructed recombining trees. Eur. J. Oper. Res. 216(1), 178–187 (2012)

    Article  MathSciNet  Google Scholar 

  18. Gramacy, R.B., Ludkovski, M.: Sequential design for optimal stopping problems. SIAM J. Financ. Math. 6(1), 748–775 (2015)

    Article  MathSciNet  Google Scholar 

  19. Han, J., E, W.: Deep Learning Approximation for Stochastic Control Problems. Tech. Rep., (2016). arXiv:1611.07422

  20. Heymann, B., Bonnans, J.F., Martinon, P., Silva, F.J., Lanas, F., Jiménez-Estévez, G.: Continuous optimal control approaches to microgrid energy management. Energy Syst. 9(1), 59–77 (2018)

    Article  Google Scholar 

  21. Heymann, B., Bonnans, J.F., Silva, F., Jimenez, G.: A stochastic continuous time model for microgrid energy management. In: 2016 European Control Conference (ECC), pp. 2084–2089 (2016)

  22. Heymann, B., Martinon, P., Bonnans, F.: Long term aging : an adaptative weights dynamic programming algorithm. Tech. Rep., hal 01349932 (2016)

  23. Hinz, J., Tarnopolskaya, T., Yee, J.: Efficient algorithms of pathwise dynamic programming for decision optimization in mining operations. Ann. Oper. Res. (2018). https://doi.org/10.1007/s10479-018-2910-3

  24. Jain, S., Oosterlee, C.W.: Pricing high-dimensional Bermudan options using the stochastic grid method. Int. J. Comput. Math. 89(9), 1186–1211 (2012)

    Article  MathSciNet  Google Scholar 

  25. Jain, S., Oosterlee, C.W.: The stochastic grid bundling method: efficient pricing of Bermudan options and their Greeks. Appl. Math. Comput. 269, 412–431 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Kharroubi, I., Langrené, N., Pham, H.: A numerical algorithm for fully nonlinear HJB equations: an approach by control randomization. Monte Carlo Meth. Appl. 20, 145–165 (2014)

    Article  MathSciNet  Google Scholar 

  27. Langrené, N., Tarnopolskaya, T., Chen, W., Zhu, Z., Cooksey, M.: New regression Monte Carlo methods for high-dimensional real options problems in minerals industry. In: 21st International Congress on Modelling and Simulation, pp. 1077–1083 (2015)

  28. Longstaff, F.A., Schwartz, E.S.: Valuing American options by simulation: a simple least-squares approach. Rev. Financ. Stud. 14(1), 113–147 (2001)

    Article  Google Scholar 

  29. Ludkovski, M.: Kriging metamodels and experimental design for Bermudan option pricing. J. Comput. Financ. 22(1), 37–77 (2018)

    Article  Google Scholar 

  30. Malyscheff, A.M., Trafalis, T.B.: Natural gas storage valuation via least squares Monte Carlo and support vector regression. Energy Syst. 8(4), 815–855 (2017)

    Article  Google Scholar 

  31. Mazieres, D., Boogert, A.: A radial basis function approach to gas storage valuation. J. Energy Mark. 6(2), 19–50 (2013)

    Google Scholar 

  32. Nadarajah, S., Margot, F., Secomandi, N.: Comparison of least squares Monte Carlo methods with applications to energy real options. Eur. J. Oper. Res. 256(1), 196–204 (2017)

    Article  MathSciNet  Google Scholar 

  33. Pham, H.: Optimal switching and free boundary problems. In: Continuous-time stochastic control and optimization with financial applications, pp. 95–137. Springer, Berlin, Heidelberg (2009)

    Book  Google Scholar 

  34. Quintero, S.A.P., Ludkovski, M., Hespanha, J.P.: Stochastic optimal coordination of small uavs for target tracking using regression-based dynamic programming. J Intell. Robot. Syst. 82(1), 135–162 (2016)

    Article  Google Scholar 

  35. Thompson, M.: Natural gas storage valuation, optimization, market and credit risk management. J. Commod. Mark. 2(1), 26–44 (2016)

    Article  Google Scholar 

  36. Thompson, M., Davison, M., Rasmussen, H.: Natural gas storage valuation and optimization: a real options application. Naval Res. Logist. (NRL) 56(3), 226–238 (2009)

    Article  MathSciNet  Google Scholar 

  37. Tsitsiklis, J.N., Van Roy, B.: Regression methods for pricing complex American-style options. Trans. Neural Netw. 12(4), 694–703 (2001)

    Article  Google Scholar 

  38. Van-Ackooij, W., Warin, X.: On conditional cuts for Stochastic Dual Dynamic Programming. Tech. Rep., (2017). arXiv:1704.06205

  39. Warin, X.: Gas storage hedging. In: Carmona, R.A., Del Moral, P., Hu, P., Oudjane, N. (eds.) Numerical methods in finance: Bordeaux, June 2010, pp. 421–445. Springer, Berlin, Heidelberg (2012)

    Chapter  Google Scholar 

  40. Zhang, R., Langrené, N., Tian, Y., Zhu, Z., Klebaner, F., Hamza, K.: Dynamic Portfolio Optimization with Liquidity Cost and Market Impact: A Simulation-and-Regression Approach. Tech. Rep., (2017). arXiv:1610.07694

  41. Zhao, G., Davison, M.: Optimal control of hydroelectric facility incorporating pump storage. Renew. Energy 34(4), 1064–1077 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Maheshwari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by NSF DMS-1736439.

Appendix: Design specifications

Appendix: Design specifications

Table 5 Design construction for different methods in Table 2 of Sect. 6.1
Table 6 Discretized inventory levels used for Adaptive design for -1D methods in Table 2
Table 7 Design specifications for different DEA implementations of Sect. 6.5 in Fig. 8

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludkovski, M., Maheshwari, A. Simulation methods for stochastic storage problems: a statistical learning perspective. Energy Syst 11, 377–415 (2020). https://doi.org/10.1007/s12667-018-0318-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-018-0318-4

Keywords

Navigation