Skip to main content

Advertisement

Log in

Intra-minutes technical impacts of PV grid integration on distribution network operation of a rural community under extreme PV power delivery

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

Integration of PV systems with distribution networks causes some technical challenges to the electrical grid and the distribution network. Most of the conducted researches concentrate on the long horizon impacts (hourly and daily based data). This study aims to capture the extreme technical impacts of PV grid integration on the distribution network at small time scale (few minutes) such that optimum mitigation techniques can be selected. The study assumes that the instantaneous peak power that would be generated from the PV array is considered constant (does not vary) for a small time frame such that the distribution network is subjected to the ultimate possible impacts (extreme impacts). Consequently, the extreme impacts are determined when the PV array produces the peak (extreme) power corresponding to the rating of installed PV array. The paper investigates the influence of both PV size (penetration level) and PV location (siting) on several technical issues such as: voltage profile at different buses, power losses across cables and short circuit currents at different nodes subjected to symmetrical fault conditions. In addition, the impacts on the total harmonic distortion (THD) of buses voltages and currents have been computed. The 3-Φ grid-connected inverter is controlled by instantaneous power control strategy to adjust the penetration level to the desired value. The obtained results indicate that the increase in PV penetration level improves the voltage profile along the network nodes and leads to a reduction in power losses across the cables as well. However, the PV grid integration has adverse effects on the distribution network protection system since the increase in PV penetration level results in higher values of the short circuit currents under symmetrical fault conditions compared with the network without renewable resource. Accordingly, the settings of overcurrent relays have to be revised to handle the under-reach (blinding of protection) or over-reach (sympathetic tripping) conditions of the relaying protection system. Moreover, the obtained results indicate that the THDs are negatively affected by the increase of the penetration level. Owing to the results, the PV allocation (PV injecting node) has also its own effects on the distribution network. The overall system is investigated using professional version of PSIM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

P :

Active power

PV :

Photovoltaic

PCC :

Point of common coupling

Q :

Reactive power

SC :

Short circuit

THD :

Total harmonic distortion

h :

Harmonic order

J :

Objective function

Z :

Impedance

MVDI:

Maximum voltage deviation index

FLLR:

Feeder loss to load ratio

KCL:

Kirchhoff’s current law

References

  1. REN21: Renewables 2017 global status report (Paris: REN21 Secretariat). ISBN:978-3-9818107-6-9 (2017)

  2. Mohammadi, P., Mehraeen, S.: Challenges of PV integration in low-voltage secondary networks. IEEE Trans. Power Deliv. 32(1), 525–535 (2017)

    Google Scholar 

  3. Eltigani, D., Masri, S.: Challenges of integrating renewable energy sources to smart grids: a review. Renew. Sustain. Energy Rev. 52, 770–780 (2015)

    Google Scholar 

  4. Karimia, M., Mokhlis, H., Naidu, K., Uddin, S., Bakar, A.H.A.: Photovoltaic penetration issues and impacts in distribution network—a review. Renew. Sustain. Energy Rev. 53, 594–605 (2016). (ELSevier Publisher)

    Google Scholar 

  5. Adefarati, T., Bansal, R.C.: Integration of renewable distributed generators into the distribution system: a review. IET Renew. Power Gener. 10(7), 873–884 (2016)

    Google Scholar 

  6. Aziz, T., Ketjoy, N.: PV penetration limits in low voltage networks and voltage variations. IEEE Access 7, 16784–16792 (2017)

    Google Scholar 

  7. Lew, D., Miller, N.: Reaching new solar heights: integrating high penetrations of PV into the power system. IET Renew. Power Gener. 11(1), 20–26 (2017)

    Google Scholar 

  8. Enslin, J.H.R.: Integration of photovoltaic solar power—the quest towards dispatchability. IEEE Instrum. Meas. Mag. 17(2), 21–26 (2014)

    Google Scholar 

  9. Passey, R., Spooner, T., MacGill, I., Watt, M., Syngellakis, K.: The potential impacts of grid-connected distributed generation and how to address them: a review of technical and non-technical factors. Energy Policy 39, 6280–6290 (2011). https://doi.org/10.1016/j.enpol.2011.07.027

    Article  Google Scholar 

  10. Walling, R.A., Saint, R., Dugan, R.C., Burke, J., Kojovic, L.A.: Summary of distributed resources impact on power delivery systems. IEEE Trans. Power Deliv. 23(3), 1636–1644 (2008)

    Google Scholar 

  11. Eltawil, M.A., Zhao, Z.: Grid-connected photovoltaic power systems: technical and potential problems—a review. Renew. Sustain. Energy Rev. 14, 112–129 (2010)

    Google Scholar 

  12. Espinosa, A.N., Ochoa, L.F.: Probabilistic impact assessment of low carbon technologies in LV distribution systems. IEEE Trans. Power Syst. 31(3), 2192–2203 (2016)

    Google Scholar 

  13. Ebad, M., Grady, W.M.: An approach for assessing high-penetration PV impact on distribution feeders. Electric Power Syst. Res. 133, 347–354 (2016)

    Google Scholar 

  14. Papaioannou, I.T., Alexiadis, M.C., Demoulias, C.S., Labridis, D.P., Dokopoulos, P.S.: Modeling and field measurements of photovoltaic units connected to LV grid. Study of penetration scenarios. IEEE Trans. Power Deliv. 26(2), 979–987 (2011)

    Google Scholar 

  15. Balamurugan, K., et al.: Impact of distributed generation on power distribution systems. Energy Procedia 25, 93–100 (2012). (ELSevier Publisher)

    Google Scholar 

  16. Alam, M.J.E., Muttaqi, K.M., Sutanto, D.: An approach for online assessment of rooftop solar PV impacts on low-voltage distribution networks. IEEE Trans. Sustain. Energy 5(2), 663–672 (2014)

    Google Scholar 

  17. Lamberti, F., Graditi, G.: Impact analysis of distributed PV and energy storage systems in unbalanced LV networks. In: IEEE Eindhoven Power Tech Conference, pp. 1–6 (2015)

  18. Soroudi, A., Ehsan, M., Caire, R., Hadjsaid, N.: Possibilistic evaluation of distributed generations impacts on distribution networks. IEEE Trans. Power Syst. 26(4), 2293–2301 (2011)

    Google Scholar 

  19. Soroudi, A., Aien, M., Ehsan, M.: A probabilistic modeling of photo voltaic modules and wind power generation impact on distribution networks. IEEE Syst. J. 6(2), 254–295 (2012)

    Google Scholar 

  20. Hizarci, H., Turkay, B.E.: Impact of distributed generation on radial distribution network with various load models. In: 52nd IEEE International Universities Power Engineering Conf. (UPEC), pp. 1–5 (2017)

  21. Westacott, P., Candelise, C.: Assessing the impacts of photovoltaic penetration across an entire low-voltage distribution network containing 1.5 million customers. IET Renew. Power Gen. J. 10(4), 460–466 (2016)

    Google Scholar 

  22. Watson, J.D., Watson, N.R., Martin, D.S., Wood, A.R., Lemon, S., Miller, A.J.V.: Impact of solar photovoltaics on the low-voltage distribution network in New Zealand. IET Gener. Trans. Distrib. 10(1), 1–9 (2016)

    Google Scholar 

  23. Kitworawut, P.B., Azuatalam, D.T., Unigwe, O.C., Collin, A.J.: An investigation into the technical impacts of microgeneration on UK-type LV distribution networks. In: 5th IEEE International Conf. on Renewable Energy Research and Application ICRERA, pp. 124–129 (2016)

  24. Miron, A., Cziker, A., Chindriș, M., Sacerdotianu, D.: Impact of distributed generation on weak distribution networks. Study case on a Romanian microgrid. In: IEEE International Conf. on Applied and Theoretical Electricity ICATE, pp. 1–6 (2016)

  25. Lazzeroni, P., Olivero, S., Stirano, F., Repetto, M.: Impact of PV penetration in a distribution grid: a Middle-East study case. In: IEEE International Forum on Research and Technology for Society RTSI, pp. 353–358 (2015)

  26. Petinrin, J.O., Shaabanb, M.: Impact of renewable generation on voltage control in distribution systems. Renew. Sustain. Energy Rev. 65, 770–783 (2016)

    Google Scholar 

  27. Asrari, A., Wu, T., Lotfifard, S.: The Impacts of distributed energy sources on distribution network reconfiguration. IEEE Trans. Energy Convers. 31(2), 606–613 (2016)

    Google Scholar 

  28. Tonkoski, R., Turcotte, D., EL-Fouly, T.H.M.: Impact of high PV penetration on voltage profiles in residential neighborhoods. IEEE Trans. Sustain. Energy 3(3), 518–527 (2012)

    Google Scholar 

  29. Chen, P.C., Salcedo, R., Zhu, Q., et al.: Analysis of voltage profile problems due to the penetration of distributed generation in low-voltage secondary distribution networks. IEEE Trans. Power Deliv. 27(4), 2020–2028 (2012)

    Google Scholar 

  30. Widéna, J., Wäckelgårda, E., Paaterob, J., Lundb, P.: Impacts of distributed photovoltaics on network voltages: stochastic simulations of three Swedish low-voltage distribution grids. Electric Power Syst. Res. 80, 1562–1571 (2010)

    Google Scholar 

  31. Vita, V., Alimardan, T., Ekonomou, L.: The impact of distributed generation in the distribution networks’ voltage profile and energy losses. IEEE European Modelling Symposium, pp. 261–265 (2015)

  32. Ogunjuyigbe, A.S.O., Ayodele, T.R., Akinola, O.O.: Impact of distributed generators on the power loss and voltage profile of sub-transmission network. J. Electr. Syst. Inf. Technol. 3, 94–107 (2016). (Elsevier Publisher)

    Google Scholar 

  33. Gkaidatzis, P.A., Doukas, D.I., Bouhouras, A.S.: Impact of penetration schemes to optimal DG placement for loss minimization. Int. J. Sustain Energy. 36(5), 473–488 (2015). (Taylor & Francis)

    Google Scholar 

  34. Castillo, F., Aguila, A., González, J.: Analysis of stability of tension and losses of electric power in distribution networks with distributed generation. IEEE Latin Am. Trans. 14(11), 4491–4498 (2016)

    Google Scholar 

  35. Marinopoulos, A.G., Alexiadis, M.C., Dokopoulos, P.S.: A correlation index to evaluate impact of PV installation on joule losses. IEEE Trans. Power Syst. 26(3), 1564–1572 (2011)

    Google Scholar 

  36. Hadjidemetriou, L., Zacharia, L., Kyriakides, E.: Flexible power control scheme for interconnected photovoltaics to benefit the power quality and the network losses of the distribution grid. IEEE Int. Future Energy Electron. Conf. IFEEC 2017, 93–98 (2017)

    Google Scholar 

  37. Blaabjerg, F., Yang, Y., Yang, D., Wang, X.: Distributed power-generation systems and protection. Proc. IEEE 105(7), 1311–1331 (2017)

    Google Scholar 

  38. Margossian, H., Deconinck, G., Sachau, J.: Distribution network protection considering grid code requirements for distributed generation. IET Gener. Transm. Distrib. 9(12), 1377–1381 (2015)

    Google Scholar 

  39. Padullaparti, H.V., Chirapongsananurak, P., Hernandez, M.E., Santoso, S.: Analytical approach to estimate feeder accommodation limits based on protection criteria. IEEE Access 4, 4066–4081 (2016)

    Google Scholar 

  40. Haj-ahmed, M.A., Illindala, M.S.: The influence of inverter-based DGs and their controllers on distribution network protection. IEEE Trans. Ind. Appl. 50(4), 2928–2937 (2013)

    Google Scholar 

  41. Jiadong, H., Zeyun, Z., Xiaobo, D.: The influence of the distributed generation to the distribution network line protection and countermeasures. Phys. Procedia 24, 205–210 (2012)

    Google Scholar 

  42. Ogden, R., Yang, J.: Impacts of distributed generation on low-voltage distribution network protection. IEEE International Universities Power Engineering Conference, pp. 1–6 (2015)

  43. Eissa, M.M.: Protection techniques with renewable resources and smart grids—a survey. Renew. Sustain. Energy Rev. 52, 1645–1667 (2015). (ELSevier Publisher)

    Google Scholar 

  44. Chidurala, A., Saha, T.K., Mithulananthan, N.: Harmonic impact of high penetration photovoltaic system on unbalanced distribution networks—learning from an urban photovoltaic network. IET Renew. Power Gener. 10(4), 485–494 (2016)

    Google Scholar 

  45. Nduka, O.S., Pal, B.C.: Harmonic domain modelling of PV system for the assessment of grid integration impact. IEEE Trans. Sustain. Energy 8(3), 1154–1165 (2017)

    Google Scholar 

  46. Varma, R.K., Rahman, S.A., Vanderheide, T., Dang, M.: Harmonic impact of a 20 MW PV solar farm on a utility distribution network. IEEE Power Energy Technol. Syst. J. 3(3), 89–98 (2016)

    Google Scholar 

  47. Silva, E.N.M., Rodrigues, A.B., da Silva, M.D.G.: Stochastic assessment of the impact of photovoltaic distributed generation on the power quality indices of distribution networks. Electric Power Syst. Res. J. 135, 59–67 (2016)

    Google Scholar 

  48. El Batawy, S.A., Morsi, W.G.: On the impact of high penetration of rooftop solar photovoltaics on the aging of distribution transformers. Can. J. Electr. Comput. Eng. 40(2), 93–100 (2017)

    Google Scholar 

  49. Paterakis, N.G., Pappi, I.N., Erdinç, O., Godina, R., et al.: Consideration of the impacts of a smart neighborhood load on transformer aging. IEEE Trans. Smart Grid 7(6), 2793–2802 (2016)

    Google Scholar 

  50. Abdelsamad, S.F., Morsi, W.G., Sidhu, T.S.: probabilistic impact of transportation electrification on the loss-of-life of distribution transformers in the presence of rooftop solar photovoltaic. IEEE Trans. Sustain. Energy 6(4), 1565–1573 (2015)

    Google Scholar 

  51. Al-Muhaini, M., Heydt, G.T.: Evaluating future power distribution system reliability including distributed generation. IEEE Trans. Power Deliv. 28(4), 2264–2272 (2013)

    Google Scholar 

  52. Heidari, A., Agelidis, V.G., Zayandehroodi, H., et al.: On exploring potential reliability gains under islanding operation of distributed generation. IEEE Trans. Smart Grid 7(5), 2166–2174 (2016)

    Google Scholar 

  53. Wang, S., Li, Z., Wu, L., et al.: New metrics for assessing the reliability and economics of microgrids in distribution system. IEEE Trans. Power Syst. 28(3), 2852–2861 (2013)

    Google Scholar 

  54. Sgouras, K.I., Bouhouras, A.S., Gkaidatzis, P.A., et al.: Impact of reverse power flow on the optimal distributed generation placement problem. IET Gener. Transm. Distrib. 11(18), 4626–4632 (2017)

    Google Scholar 

  55. Mortazavi, H., Mehrjerdi, H., Saad, M., et al.: A monitoring technique for reversed power flow detection with high PV penetration level. IEEE Trans. Smart Grid 6(5), 2221–2232 (2015)

    Google Scholar 

  56. Wang, Y., Tan, K.T., Peng, X.Y., So, P.L.: Coordinated control of distributed energy storage systems for voltage regulation in distribution networks. IEEE Trans. Power Delivery 31(3), 1132–1141 (2016)

    Google Scholar 

  57. Hossain, M.J., Mahmud, M.A., Pota, H.R., Mithulananthan, N.: Design of non-interacting controllers for PV systems in distribution networks. IEEE Trans. Power Syst. 29(6), 2763–2774 (2014)

    Google Scholar 

  58. Li, Q., Ayyanar, R., Vittal, V.: Convex optimization for DES planning and operation in radial distribution systems with high penetration of PV resources. IEEE Trans. Sustain. Energy 7(3), 985–995 (2016)

    Google Scholar 

  59. Naily, N.E., Saad, S.M., Hussein, T., et al.: Minimizing the impact of distributed generation of a weak distribution network with an artificial intelligence technique. Appl. Solar Energy 53(2), 109–122 (2017)

    Google Scholar 

  60. Yeh, C.C., Chen, C.S., Ku, T.T., et al.: Mitigation of voltage variation by REMS for distribution feeders. IEEE Trans. Ind. Appl. 53(2), 901–907 (2017)

    Google Scholar 

  61. Wu, J., Guan, X.: Coordinated multi-microgrids optimal control algorithm for smart distribution management system. IEEE Trans. SMART Grid 4(4), 2174–2181 (2013)

    Google Scholar 

  62. Agalgaonkar, Y.P., Pal, B.C., Jabr, R.A.: Distribution voltage control considering the impact of PV generation on tap changers and autonomous regulators. IEEE Trans. Power Syst. 29(1), 182–192 (2014)

    Google Scholar 

  63. Mahmud, K., Town, G.E., Hossain, M.J.: Mitigating the impact of rapid changes in photovoltaic power generation on network voltage. IEEE Power Energy Conference PECI, USA, pp. 1–6 (2017)

  64. Quijano, D.A., Wang, J., Sarker, M.R., Feltrin, A.P.: Stochastic assessment of distributed generation hosting capacity and energy efficiency in active distribution networks. IET Gener. Transm. Distrib. 11(18), 4617–4625 (2017)

    Google Scholar 

  65. Abbasi, F., Hosseini, S.M.: “Optimal DG allocation and sizing in presence of storage systems considering network configuration effects in distribution systems. IET Gener. Transm. Distrib. 10(3), 617–624 (2016)

    Google Scholar 

  66. Mahmoud, K., Yorino, N., Ahmed, A.: Optimal distributed generation allocation in distribution systems for loss minimization. IEEE Trans. Power Syst. 31(2), 960–969 (2016)

    Google Scholar 

  67. Tolabi, H.B., Hasan Ali, M., Rizwan, M.: Simultaneous reconfiguration, optimal placement of DSTATCOM, and photovoltaic array in a distribution system based on fuzzy-ACO approach. IEEE Trans. Sustain. Energy 6(1), 210–218 (2015)

    Google Scholar 

  68. Hariri, A., Faruque, M.O.: A hybrid simulation tool for the study of PV integration impacts on distribution networks. IEEE Trans. Sustain. Energy 8(2), 648–657 (2017)

    Google Scholar 

  69. Martin, D.S., Lemon, S.: Simplified modeling of low voltage distribution networks for PV voltage impact studies. IEEE Trans. Smart Grid 7(4), 1924–1931 (2015)

    Google Scholar 

  70. IEEE guide for conducting distribution impact studies for distributed resource interconnection. In: IEEE Standard 1547.7-2013, pp. 1–137 (2014)

  71. IEEE Application Guide for IEEE std 1547. In: IEEE Standard for interconnecting distributed resources with electric power systems. IEEE standard 1547 2-2008, pp. 1–207 (2009)

  72. Wu, Y.K., Lin, J.H., Lin, H.J.: Standards and guides for grid-connected photovoltaic generation systems: a review and comparison. IEEE Trans. Ind. Appl. 53(4), 3205–3216 (2017)

    Google Scholar 

  73. Halamay, D., Brekken, T., et al.: Reserve requirement impacts of large-scale integration of wind, solar, and ocean wave power generation. IEEE Trans. Sustain. Energy 2(3), 321–328 (2011)

    Google Scholar 

  74. Ibanez, E., Krad, I. et al.: Impacts of short-term solar power forecasts in system operations. In: IEEE transmission and distribution conference, conference proceedings, USA, pp. 1–5 (2016)

  75. Ela, E., O’Malley, M.: Studying the variability and uncertainty impacts of variable generation at multiple timescales. IEEE Trans. Power Syst. 27(3), 1324–1333 (2012)

    Google Scholar 

  76. Akagi, H., Kanzawa, Y., Nabae, A.: Instantaneous reactive power compensators comprising switching devices without energy components. IEEE Trans. Ind. Application 20(3), 625–630 (1984)

    Google Scholar 

  77. Akagi, H., Kanzawa, Y., Nabae, A.: Generalized theory of the instantaneous reactive power in three-phase circuits. Int. Power Electronics Conference IPEC’83, Tokyo, Japan, pp. 1375–1386

  78. Czarnecki, L.S.: Instantaneous reactive power P-Q theory and power properties of three-phase systems. IEEE Trans. Power Delivery 21(1), 362–367 (2006)

    MathSciNet  Google Scholar 

  79. Azab, M.: Flexible PQ control for single-phase grid-tied photovoltaic inverter. In: 17th IEEE Int. Conf. on Environment and Electrical Engineering EEEIC, Conference Proceedings, Italy, pp. 1–6 (2017)

  80. Yang, Y., Blaabjerg, F., et al.: Power control flexibilities for grid-connected multi-functional photovoltaic inverters. IET Renew. Power Gener. 10(4), 504–513 (2016)

    Google Scholar 

  81. Liu, L., Li, H., Xue, Y., Liu, W.: Reactive power compensation and optimization strategy for grid-interactive cascaded photovoltaic systems. IEEE Trans. Power Electron. 30(1), 188–202 (2015)

    Google Scholar 

  82. Vita, V., Ekonomu, L., Christodoulu, C.A.: The impact of distributed generation to the lightning protection of modern distribution lines. Energy Syst. 7(2), 357–364 (2016). https://doi.org/10.1007/s12667-015-0175-3. (Springer Verlag Publisher)

    Article  Google Scholar 

  83. Kawabe, K., Tanaka, K.: Impact of dynamic behavior of photovoltaic power generation systems on short-term voltage stability. IEEE Trans. Power Syst. 30, 3416–3424 (2015)

    Google Scholar 

  84. Kou, W., Jung, S.H., Park, S.Y.: Optimal location strategy for distributed generation to maximize system voltage stability based on line sensitivity factors. Energy Syst (2017). https://doi.org/10.1007/s12667-017-0260-x. (Springer Verlag Publisher)

    Article  Google Scholar 

  85. Guangya, Y., et al.: Voltage rise mitigation for solar PV integration at LV grids. J. Modern Power Syst. Clean Energy. 3(3), 411–421 (2015). https://doi.org/10.1007/s40565-015-0132-0. (Springer Verlag Publisher)

    Article  Google Scholar 

  86. Dominguez, M., et al.: Optimal siting and sizing of renewable energy sources, storage devices, and reactive support devices to obtain a sustainable electrical distribution systems. Energy Syst (2017). https://doi.org/10.1007/s12667-017-0254-8. (Springer Verlag Publisher)

    Article  Google Scholar 

  87. Aman, M., Jasmon, G., Bakar, A., Mokhlis, H.: A new approach for optimum DG placement and sizing based on voltage stability maximization and minimization of power losses. Energy Convers. Manag. 70, 202–210 (2013)

    Google Scholar 

  88. Dixit, M., Kundu, P., Jariwala, H.R.: Integration of distributed generation for assessment of distribution system reliability considering power loss, voltage stability and voltage deviation. Energy Syst. (2017). https://doi.org/10.1007/s12667-017-0248-6. (Springer Verlag Publisher)

    Article  Google Scholar 

  89. Jimenez, L.A.F., Jimenez, A.M., Falces, A., et al.: Short-term power forecasting system for photovoltaic plants. Renew. Energy 44, 311–317 (2012)

    Google Scholar 

  90. Bacher, P., Madsen, H., Nielsen, H.: Online short-term solar power forecasting. Sol. Energy 83(10), 1772–1783 (2009)

    Google Scholar 

  91. Anvari, M., et al.: Short term fluctuations of wind and solar power systems. N. J. Phys. 18, 063027 (2016). https://doi.org/10.1088/1367-2630/18/6/063027. (IOP Publishing, Germany)

    Article  Google Scholar 

  92. Hansen, C.W., Stein, J.S., Riley, D.: Effect of time scale on analysis of PV system performance. Sandia Report, SAND2012-1099, Sandia National Laboratories, Albuquerque, California, USA

  93. Marquez, R., Coimbra, C.: Intra-hour DNI forecasting based on cloud tracking image analysis. Sol. Energy 91, 327–336 (2013)

    Google Scholar 

  94. Roy, S.: Worst-case temporal aggregate power ramp distributions for a PAC wind turbine. Energy Syst (2017). https://doi.org/10.1007/s12667-017-0250-z. (Springer Verlag Publisher)

    Article  Google Scholar 

  95. Akcay, H., Filik, T., Yan, J.: Short-term wind speed forecasting by spectral analysis from long-term observations with missing values. Appl. Energy 191, 653–662 (2017)

    Google Scholar 

  96. Osrio, G.J., Matias, J., Catal, J.: Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew. Energy 75, 301–307 (2015)

    Google Scholar 

  97. Zhang, X., Wang, J., Zhang, K.: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by cuckoo search algorithm. Electr. Power Syst. Res. 146, 270–285 (2017)

    Google Scholar 

  98. Ghiani, E., Pilo, F.: Smart inverter operation in distribution networks with high penetration of photovoltaic systems. J. Modern Power Syst. Clean Energy 3(4), 504–511 (2015). https://doi.org/10.1007/s40565-015-0165-4. (Springer Verlag Publisher)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Azab.

Appendices

Appendix 1: Simulation parameters

Electrical data of PV module @ STC

 

Type

Sunpower E19/320

 Peak power Pmax

320 W

 Efficiency

19.6%

 Rated voltage Vmpp

54.7 V

 Rated current Impp

5.86 A

 Open circuit voltage Voc

64.8 V

 Short circuit current Isc

6.24 A

Parameters of cables

 

 Positive sequence resistance RD

0.10 Ω/km

 Zero sequence resistance Ro

0.345 Ω/km

 Positive sequence reactance XD

0.119 Ω/km

 Zero sequence reactance Xo

0.2513 Ω/km

 Zero sequence capacitance Co

0.01 μF/km

Parameters of 3-Φ filter inductor

 

 Per phase inductance L

3 mH/phase

 Equivalent series resistance R

0.1 Ω/phase

Rating of main transformer

 

 Number of phases

3 phase

 VA rating

500 kVA

 HT voltage (primary side)

69 kV

 LT voltage (secondary side)

12 kV

Full load power

 

 Active power

250 kW

 Reactive power

120 kVAR

Appendix 2: Principles of a PV cell

A basic photovoltaic cell is a p-n semiconductor junction. When the PV cell is exposed to sunlight, a dc current is generated. The light-generated current varies linearly with the solar irradiance. The equivalent circuit of the PV cell is shown in Fig. 23, where light dependent (photo-generated) current source Iph is connected in parallel with the internal PN diode. The equivalent circuit of a PV cell has also an equivalent series resistance of a small value. Also, an equivalent shunt resistance of a relatively high value is parallel to the PN diode structure.

Fig. 23
figure 23

Single-diode model of PV cell

The single-diode model shown in Fig. 23 emulates the characteristics of single PV cell with a high precision at high and medium levels of solar irradiance. I–V relationship of PV cell can be obtained using Eq. (24):

$$ {\text{I}}_{{{\text{cell}}}} = {\text{I}}_{{{\text{ph}}}} - {\text{I}}_{{\text{D}}} - {\text{I}}_{{{\text{SH}}}} = {\text{I}}_{{{\text{ph}}}} - {\text{I}}_{{\text{o}}} \left\{ {{\text{e}}^{{{\text{q}}\left( {\frac{{{\text{V}}_{{{\text{cell}}}} + {\text{I}}_{{{\text{cell}}}} {\text{R}}_{{\text{S}}} }}{{{\text{AkT}}}}} \right)}} - 1} \right\} - \frac{{{\text{V}}_{{{\text{cell}}}} + {\text{I}}_{{{\text{cell}}}} {\text{R}}_{{\text{S}}} }}{{{\text{R}}_{{\text{P}}} }} $$
(24)

where Vcell and Icell are the cell voltage and current respectively; Iph and Io are the photo-generated current and the dark saturation current respectively; RS and RP are the series and parallel resistances respectively; k is Boltzmann’s constant; T is the junction temperature; A is the diode ideality factor; and q is the electron charge.

Moreover, a single PV module composed of several cells connected in series (NS) and have several parallel branches (NP) can be modeled using Eqs. (25), (26) and (27), where I,V and P are the PV module current, voltage and power respectively. G is the solar irradiance in W/m2. The generalized model of a PV module is shown in Fig. 24.

$$ I = N_{P} I_{PH} - N_{P} I_{o} \left[ {e^{{q\left( {\frac{{V + \left( {N_{S} /N_{P} } \right)IR_{S} }}{{\left( {N_{S} /N_{P} } \right)AKT}}} \right)}} - 1} \right] - \frac{{V + I\left( {N_{S} /N_{P} } \right)R_{S} }}{{\left( {N_{S} /N_{P} } \right)R_{P} }} $$
(25)
$$ I_{PH} = G\left[ {I_{SC} + k_{i} \left( {T - T_{ref} } \right)} \right]/1000 $$
(26)
$$ P = VI $$
(27)
Fig. 24
figure 24

Generalized model of a PV module

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azab, M. Intra-minutes technical impacts of PV grid integration on distribution network operation of a rural community under extreme PV power delivery. Energy Syst 11, 213–245 (2020). https://doi.org/10.1007/s12667-018-0307-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-018-0307-7

Keywords

Navigation