The impact of electricity tariffs on residential demand side flexibility: results of bottom-up load profile modeling

  • Marian Hayn
  • Anne Zander
  • Wolf Fichtner
  • Stefan Nickel
  • Valentin Bertsch
Original Paper
  • 20 Downloads

Abstract

Energy systems based on renewable energy sources require increasing demand side flexibility. Also, changes in the underlying cost structure, i.e., decreasing variable costs and increasing infrastructure investments as well as varying consumer needs should be reflected in the setup of future markets, including retail markets and tariffs. While various studies focus solely on tariffs with variable energy prices to leverage residential demand side flexibility, we incorporate tariffs with capacity-based price components in our analysis. The latter enable electricity providers to offer more differentiated tariffs, considering individual consumer needs and a balanced cost allocation. To compare the impact of different tariffs on residential demand side flexibility, we develop a bottom-up load model. This model not only simulates but also optimizes residential load profiles in the presence of different tariffs. The model is calibrated based on data from a large-scale field trial. Our results show that tariffs with variable energy prices induce larger demand side flexibility, but the impact of tariffs with variable capacity prices is more predictable and reliable from a suppliers perspective. Potential regulatory adjustments are identified enabling sustainable business models, rewarding demand side flexibility and facilitating the technical implementation.

Keywords

Residential bottom-up load model Variable energy prices Variable capacity prices Load shifting potential Demand side flexibility 

Notes

Acknowledgements

Valentin Bertsch acknowledges funding from the Energy Policy Research Centre of the Economic and Social Research Institute. The usual disclaimer applies.

References

  1. 1.
    Ambec, S., Crampes, C.: Electricity provision with intermittent sources of energy. Resour. Energy Econ. 34(3), 319–336 (2012)CrossRefGoogle Scholar
  2. 2.
    Beer, M.: CO\(_2\)-Verminderung in Deutschland. Endbericht. Tech. rep, FfE, Munich (2009)Google Scholar
  3. 3.
    Bertsch, J., Growitsch, C., Lorenczik, S., Nagl, S.: Flexibility in Europe’s power sector—an additional requirement or an automatic complement? Energy Econ. 53, 118–131 (2016)CrossRefGoogle Scholar
  4. 4.
    Bertsch, V., Schwarz, H., Fichtner, W.: Layout optimisation of decentralised energy systems under uncertainty. In: Operations Research Proceedings 2013. Springer, Berlin, pp. 29–35 (2014)Google Scholar
  5. 5.
    Bertsch, V., Geldermann, J., Lühn, T.: What drives the profitability of household PV investments, self-consumption and self-sufficiency? Appl. Energy 204, 1–15 (2017)CrossRefGoogle Scholar
  6. 6.
    Broberg, T., Persson, L.: Is our everyday comfort for sale? Preferences for demand management on the electricity market. Energy Econ. 54, 24–32 (2016)CrossRefGoogle Scholar
  7. 7.
    Burger, S., Chaves-Ávila, J.P., Batlle, C., Pérez-Arriaga, I.J.: The Value of Aggregators in Electricity Systems. MIT working paper (2016)Google Scholar
  8. 8.
    Bürger, V.: Identifikation, Quantifizierung und Systematisierung technischer und verhaltensbedingter Stromeinsparpotenziale privater Haushalte. Freiburg (TRANSPOSE Working Paper, 3) (2009)Google Scholar
  9. 9.
    Ceseña, E.A.M., Good, N., Mancarella, P.: Electrical network capacity support from demand side response: Techno-economic assessment of potential business cases for small commercial and residential end-users. Energy Policy 82, 222–232 (2015)CrossRefGoogle Scholar
  10. 10.
    Clastres, C., Khalfallah, H.: An analytical approach to activating demand elasticity with a demand response mechanism. Energy Econ. 52, 195–206 (2015)CrossRefGoogle Scholar
  11. 11.
    Destatis, S.B.: Einkommens- und Verbrauchsstichprobe. Ausstattung privater Haushalte mit ausgewählten Gebrauchsgütern 2013. Tech. rep. Wiesbaden (2013)Google Scholar
  12. 12.
    Energieagentur, D.: dena-Netzstudie II. Integration erneuerbarer Energien in die deutsche Stromversorgung im Zeitraum 2015-2020 mit Ausblick 2025 (2010)Google Scholar
  13. 13.
    Esslinger, P., Witzmann, R.: Entwicklung und Verifikation eines stochastischen Verbraucherlastmodells für Haushalte. In: Symposium Energieinnovation (2012)Google Scholar
  14. 14.
    Faruqui, A., Sergici, S.: Household response to dynamic pricing of electricity: a survey of 15 experiments. J. Regul. Econ. 38(2), 193–225 (2010)CrossRefGoogle Scholar
  15. 15.
    Frondel, M., Andor, M., Ritter, N., Tauchmann, H., Vance, C., Matuschek, P., Müller, U.: Erhebung des Energieverbrauchs der privaten Haushalte für die Jahre 2009–2010: Teilbericht für das Projekt Erhebung des Energieverbrauchs der privaten Haushalte für die Jahre 2006–2010. Tech. rep, RWI Projektberichte (2013)Google Scholar
  16. 16.
    Fünfgeld, C., Tiedemann, R.: Anwendung der repräsentativen VDEW-Lastprofile: step-by-step. VDEW (2000)Google Scholar
  17. 17.
    Gobmaier, T.H.: Entwicklung und Anwendung einer Methodik zur Synthese zukünftiger Verbraucherlastgänge. PhD Thesis, TU Munich (2013)Google Scholar
  18. 18.
    Good, N., Ellis, K.A., Mancarella, P.: Review and classification of barriers and enablers of demand response in the smart grid. Renew. Sustain. Energy Rev. 72, 57–72 (2017)CrossRefGoogle Scholar
  19. 19.
    Gottwald, S.: Managing flexible loads in residential areas. PhD Thesis, Karlsruhe Institut of Technology (KIT). Karlsruhe, Germany (2015)Google Scholar
  20. 20.
    Gottwalt, S., Ketter, W., Block, C., Collins, J., Weinhardt, C.: Demand side management—a simulation of household behavior under variable prices. Energy Policy 39(12), 8163–8174 (2011)CrossRefGoogle Scholar
  21. 21.
    Grandjean, A., Adnot, J., Binet, G.: A review and an analysis of the residential electric load curve models. Renew. Sustain. Energy Rev. 16(9), 6539–6565 (2012)CrossRefGoogle Scholar
  22. 22.
    Hayn, M., Bertsch, V., Fichtner, W.: Electricity load profiles in Europe: the importance of household segmentation. Energy Res. Soc. Sci. 3, 30–45 (2014)CrossRefGoogle Scholar
  23. 23.
    Hayn, M., Bertsch, V., Fichtner, W.: Residential bottom-up load modeling with price elasticity. In: Sustainable Energy Policy and Strategies for Europe. In: Proceedings of the 14th IAEE European Energy Conference. Rome, Italy (2014)Google Scholar
  24. 24.
    Hayn, M., Bertsch, V., Fichtner, W.: A concept for service level indicators in residential electricity tariffs with variable capacity prices. Advances in Service Research, pp. 1–10 (2015)Google Scholar
  25. 25.
    Hayn, M., Schneider, R., Bertsch, V., Fichtner, W.: Wert der Versorgungssicherheit und Akzeptanz von Stromtarifen mit variablen Leistungspreisen. Evolution oder, Revolution, Energiesysteme im Wandel, pp. 2015–2019 (2015)Google Scholar
  26. 26.
    Henriot, A.: Economic curtailment of intermittent renewable energy sources. Energy Econ. 49, 370–379 (2015)CrossRefGoogle Scholar
  27. 27.
    Hillemacher, L., Hufendiek, K., Bertsch, V., Wiechmann, H., Gratenau, J., Jochem, P., Fichtner, W.: Ein Rollenmodell zur Einbindung der Endkunden in eine smarte Energiewelt. Z. Energiewirtschaft 37(3), 195–210 (2013)CrossRefGoogle Scholar
  28. 28.
    Huang, S., Hodge, B.M.S., Taheripour, F., Pekny, J.F., Reklaitis, G.V., Tyner, W.E.: The effects of electricity pricing on PHEV competitiveness. Energy Policy 39(3), 1552–1561 (2011)CrossRefGoogle Scholar
  29. 29.
    IWU IWuU: Gradtagszahlen in Deutschland. Tech. rep.. http://www.iwu.de/fileadmin/. Accessed 12 Aug 2014 (2014)
  30. 30.
    Jacobsen, H.K., Schröder, S.T.: Curtailment of renewable generation: economic optimality and incentives. Energy Policy 49, 663–675 (2012)CrossRefGoogle Scholar
  31. 31.
    Khalilpour, R., Vassallo, A.: Leaving the grid: an ambition or a real choice? Energy Policy 82, 207–221 (2015)CrossRefGoogle Scholar
  32. 32.
    Klobasa, M.: Dynamische Simulation eines Lastmanagements und Integration von Windenergie in ein Elektrizitätsnetz auf Landesebene unter regelungstechnischen und Kostengesichtspunkten. PhD Thesis, ETH Zurich (2007)Google Scholar
  33. 33.
    Kostková, K., Omelina, L., Kyčina, P., Jamrich, P.: An introduction to load management. Electr. Power Syst. Res. 95, 184–191 (2013)CrossRefGoogle Scholar
  34. 34.
    Krzikalla, N., Achner, S., Brühl, S.: Möglichkeiten zum Ausgleich fluktuierender Einspeisungen aus erneuerbaren Energien: Studie im Auftrag des Bundesverbandes Erneuerbare Energie. Ponte Press, Bochum (2013)Google Scholar
  35. 35.
    Lanz, M., Fricke, B., Anthrakidis, A., Genter, M., Hoffschmidt, B., Faber, C., Hauser, E., Klann, U., Leprich, U., Bauknecht, D., et al.: CO\(_2\)-Emissionsminderung durch Ausbau, informationstechnische Vernetzung und Netzoptimierung von Anlagen dezentraler, fluktuierender und erneuerbarer Energienutzung in Deutschland, Umweltbundesamt, Clim. Change 20, 2011 (2011)Google Scholar
  36. 36.
    MAIER, C., Groiß, C., Litzlbauer, M., Schuster, A., Zeilinger, F.: Eigenverbrauchssteigerung in Haushalten durch Demand-Side-Management. Innehalten und Ausblick: Effektivität und Effizienz für die Energiewende, EnInnov 13 (2014)Google Scholar
  37. 37.
    Michalik, G., Khan, M., Bonwick, W., Mielczarski, W.: Structural modelling of energy demand in the residential sector: 1: Development of structural models. Energy 22(10), 937–947 (1997)CrossRefGoogle Scholar
  38. 38.
    Moser, S., Elbe, C., Schmautzer, E., Muggenhumer, G.: Loadshift: Lastverschiebung in Haushalt, Industrie. Gewerbe und kommunaler Infrastruktur Potenzialanalyse für Smart Grids, Lastverschiebung in Haushalten Österreichische Begleitforschung zu Smart Grids, Vienna, Austria (2015)Google Scholar
  39. 39.
    Nolden, C., Schönfelder, M., Eßer-Frey, A., Bertsch, V., Fichtner, W.: Network constraints in techno-economic energy system models: towards more accurate modeling of power flows in long-term energy system models. Energy Syst. 4(3), 267–287 (2013)CrossRefGoogle Scholar
  40. 40.
    Oren, S.S.: Privatizing electric reliability through smart grid technologies and priority service contracts. In: Power and Energy Society General Meeting, 2010 IEEE, IEEE, pp 1–3 (2010)Google Scholar
  41. 41.
    Paatero, J.V., Lund, P.D.: A model for generating household electricity load profiles. Int. J. Energy Res. 30(5), 273–290 (2006)CrossRefGoogle Scholar
  42. 42.
    Prior, D.: Nachbildung der Energiebedarfsstruktur der Privaten Haushalte: Werkzeug zur Bewertung von Energieeinsparmaßnahmen. VDI-Verlag, Germany (1997)Google Scholar
  43. 43.
    Ruiz, N., Claessens, B., Jimeno, J., López, J.A., Six, D.: Residential load forecasting under a demand response program based on economic incentives. Int. Trans. Electr. Energy Syst. 25(8), 1436–1451 (2015)CrossRefGoogle Scholar
  44. 44.
    Ruppert, M., Hayn, M., Bertsch, V., Fichtner, W.: Impact of residential electricity tariffs with variable energy prices on low voltage grids with photovoltaic generation. Int. J. Electr. Power Energy Syst. 79, 161–171 (2016)CrossRefGoogle Scholar
  45. 45.
    Schermeyer, H., Klapdor, K., Steinhausen, B., Bergmann, P., Bertsch, V.: Lösungsvorschläge für ein marktnahes Einspeisemanagement. Energiewirtschaftliche Tagesfragen 64(8), 52–56 (2014)Google Scholar
  46. 46.
    Schwarz, H., Bertsch, V., Fichtner, W.: Two-stage stochastic, large-scale optimization of a decentralized energy system: a case study focusing on solar PV, heat pumps and storage in a residential quarter. OR Spectr. 40(1), 265–310 (2018a)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Schwarz, H., Schermeyer, H., Bertsch, V., Fichtner, W.: Self-consumption through power-to-heat and storage for enhanced PV integration in decentralised energy systems. Solar Energy 163, 150–161 (2018)Google Scholar
  48. 48.
    Simshauser, P.: Distribution network prices and solar PV: resolving rate instability and wealth transfers through demand tariffs. Energy Econ. 54, 108–122 (2016)CrossRefGoogle Scholar
  49. 49.
    Stamminger, R., Broil, G., Pakula, C., Jungbecker, H., Braun, M., Rüdenauer, I., Wendker, C.: Synergy potential of smart appliances. Report of the Smart-A project (2008)Google Scholar
  50. 50.
    Swan, L.G., Ugursal, V.I.: Modeling of end-use energy consumption in the residential sector: a review of modeling techniques. Renew. Sustain. Energy Rev. 13(8), 1819–1835 (2009)CrossRefGoogle Scholar
  51. 51.
    Widén, J., Molin, A., Ellegård, K.: Models of domestic occupancy, activities and energy use based on time-use data: deterministic and stochastic approaches with application to various building-related simulations. J. Build. Perform. Simul. 5(1), 27–44 (2012)CrossRefGoogle Scholar
  52. 52.
    Woo, C.K.: Efficient electricity pricing with self-rationing. J. Regul. Econ. 2(1), 69–81 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chair of Energy EconomicsKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Institute of Operations ResearchKarlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Economic and Social Research InstituteDublinIreland
  4. 4.Department of EconomicsTrinity College DublinDublinIreland

Personalised recommendations