Skip to main content

Advertisement

Log in

Enhancing operation of decentralized energy systems by a regional economic optimization model DISTRICT

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

In this paper, a regional energy system model is introduced. The model targets the cost minimal operation of a regional energy system with the possibility of trading electricity at a spot and reserve market outside of the system borders. The system boundaries are set to be around the regional energy system, with one connection point to the rest of the system and hence the possibility to trade across the system border. Within the system boundaries, the system is divided into model areas where demand and generation are located, using a transport model approach to account for grid restrictions between the model areas. In addition to generation technologies, the model allows for demand side management and storage usage. For the trade at central markets, spot and reserve markets are integrated, using a price-taker approach. The paper shows the mathematical formulation in detail. To test the formulation and methodology of the model presented here, a case study based on real data is conducted. The case study highlights the fact that the model accounts for operational interconnections of technologies at distribution grid level. It also enables looking at effects on the grid and indicates where a more detailed power flow analysis might be required. If the proclaimed flexible energy systems come to reality, the model enables stakeholders to improve their knowledge of their distributed system, the effects of small-scale technologies and the interplay with the central system. Hence, the application demonstrates that the model adds value to closing the knowledge gap between stakeholders’ concerns about efficient operation planning of their system at distribution grid level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. The model has been extended to cover the heat sector in detail. All heat related aspects are published in a separate publication, cf. [50].

Abbreviations

a :

Model area

out :

Model area where the rest of the world is located

tec :

Technologies, consisting of all power plants, storage systems and infrastructure (distribution capacity and transformer)

pp :

Subset of tec consisting only of power plants, including all electricity generation technologies such as wind, pv, chp

re :

Subset of tec including all renewable energy plants, except biomass

stor :

Subset of tec including all storage systems

dsm :

Subset of tec only including DSM

ind :

Subset of tec including only DSM of industrial processes

t :

Time-step

\(bid\_block\) :

Bid period for the corresponding reserve product

\(\varDelta t\) :

Length of time-step in h

\(\eta _{\textit{stor}}^{\textit{ch}}\) :

Charge efficiency for storage systems

\(\eta _{\textit{stor}}^{\textit{dch}}\) :

Discharge efficiency for storage systems

\(\sigma _{\textit{chp}}\) :

Power to heat ratio for CHP

\({ cap}_{\textit{a,pp,t}}\) :

Installed plant capacity in kW

\({cap}_{\textit{a,stor}}^{\textit{ch}}\) :

Installed charge capacity in kW

\({cap}_{\textit{a,stor}}^{\textit{dch}}\) :

Installed discharge capacity in kW

\({cap}_{\textit{res}}^{\textit{res,min}}\) :

Minimum bid capacity for the corresponding reserve product in kW

\({cfr}_{\textit{res,t}}\) :

Binary call factor for offered reserve capacity

\({cp}_{\textit{res}}\) :

Call probability of corresponding reserve market product

\({{\textit{dem}}}_{\textit{a,t}}^{\textit{heat}}\) :

Heat demand in kW

\({{\textit{dem}}}_{\textit{a,t}}^{\textit{pl}}\) :

Planned demand in the corresponding area in kW

\({{\textit{dem}}}_{\textit{a}}^{\textit{pl,max}}\) :

Annual maximum of the planned demand in kW

\({dod}_{\textit{stor,t}}\) :

Depth of discharge

\({fc}_{\textit{pp}}\) :

Specific fixed operation cost in €/kW

\({fp}_{\textit{pp}}\) :

Fuel price in €/kWh

l :

Loss factor for electricity transmission

\({lf}_{\textit{a,re,t}}\) :

Load factor for renewable power plants, depending on the weather conditions in their location

\(k_{\textit{pp}}^{{{ CO}_{2}}}\) :

CO\(_{2}\) emission factor

n :

Number of time-steps

\(p^{{ {CO}_{2}}}\) :

Price of CO\(_{2}\) emission certificates in €/tCO\(_{2}\)

\(p_{\textit{pp}}^{\textit{fuel}}\) :

Fuel price in €/kWh

\(p_{\textit{res,t}}^{\textit{res,cap}}\) :

Price of offered reserve capacity for the corresponding reserve product in €/kW

\(p_{\textit{res,t}}^{\textit{res,en}}\) :

Price for called reserve energy in €/kW

\(p_{\textit{t}}^{\textit{spot}}\) :

Spot market price in €/kW

\({pot}_{\textit{a,stor}}^{\textit{ch}}\) :

Potentially installable charge capacity in kW

\({pot}_{\textit{a,stor}}^{\textit{dch}}\) :

Potentially installable discharge capacity in kW

\({soc}_{\textit{a,dsm,t}}^{\textit{max}}\) :

Maximum state of charge for the DSM storage dependent on the planned demand in kWh

\({soc}_{\textit{a,dsm,t}}^{\textit{min}}\) :

Minimum state of charge for the DSM storage dependent on the planned demand in kWh

\({tcap}_{\textit{a,aj}}\) :

Transmission capacity between areas a and aj in kW

tf :

Trading factor for spot market trades

\({tpot}_{\textit{a,aj}}\) :

Potential transmission capacity that could be installed in expansion planning in kW

\({vc}_{\textit{stor}}^{\textit{ch}}\) :

Specific variable charge cost in €/kW

\({vc}_{\textit{stor}}^{\textit{dch}}\) :

Specific variable discharge cost in €/kW

\(vc_{\textit{pp}}\) :

Specific variable operation cost in €/kWh

\({vol}_{\textit{a,stor,t}}\) :

Installed storage volume in kWh

TC :

Total cost in €

\({SoC}_{\textit{a,stor,t}}\) :

State of charge in kWh (free for all DSM storage systems, positive only for normal storage systems)

\(Y_{\textit{a,aj,t}}^{\textit{ex}}\) :

Binary decision variable for electricity export

\(Y_{\textit{a,stor,t}}^{\textit{ch,pl}}\) :

Binary decision variable for planned storage discharge

\(Y_{\textit{a,stor,t}}^{\textit{ch}}\) :

Binary decision variable for storage charge

\(X_{\textit{t,res}}\) :

Binary decision variable whether the corresponding reserve product is offered

\({{\textit{CH}}}_{\textit{a,stor,t}}^{\textit{pl}}\) :

Planned charge of storage systems in kW

\({{\textit{CH}}}_{\textit{a,stor,t}}\) :

Storage charge in kW

\({{\textit{DCH}}}_{\textit{a,stor,t}}^{\textit{pl}}\) :

Planned discharge in kW

\({{\textit{DCH}}}_{\textit{a,stor,t}}\) :

Storage discharge in kW

\({{\textit{DEM}}}_{\textit{a,t}}\) :

Electricity demand after DSM usage in kW

\(E_{\textit{t}}^{\textit{bought}}\) :

Electricity bought at the spot market in kW

\(E_{\textit{t}}^{\textit{sold}}\) :

Electricity sold at the spot market in kW

\({EX}_{\textit{t,a,aj }}\) :

Export of electricity from area a into area aj in kW

FC :

Sum of fix operation cost in €

\({FI}_{\textit{t,a}}\) :

Electricity fed into the grid from the corresponding area in kW

\({{\textit{GEN}}}_{\textit{a,chp,t}}^{\textit{heat}}\) :

Heat generation from CHP plants in kW

\({{\textit{GEN}}}_{\textit{a,pp,t}}^{\textit{pl}}\) :

Planned electricity generation in kW

\({{\textit{GEN}}}_{\textit{a,pp,t}}\) :

Realized electricity generation in kW

\({HD}_{\textit{a,chp,t}}\) :

Heat dumped in kW

\({IM}_{\textit{t,aj,a}}\) :

Import of electricity from area aj into area a in kW

\(P_{\textit{a,pp,t}}^{\textit{fuel}}\) :

Fuel power required in kW

\({RES}_{\textit{res,a,pp,t}}^{\textit{cap}}\) :

Offered reserve capacity for each reserve product from the respective plants / storage systems in kW

\({RES}_{\textit{res,a,pp,t}}^{\textit{energy}}\) :

Called reserve energy in kWh

\({REC}_{\textit{a,re,t}}\) :

Curtailment of electricity from renewable energy plants in kW

\({RES}_{\textit{res,a,stor,t}}^{\textit{energy1}}\) :

Called reserve energy affecting storage charge in kW

\({RES}_{\textit{res,a,stor,t}}^{\textit{energy2}}\) :

Called reserve energy affecting storage discharge in kW

\(R^{\textit{res}}\) :

Revenue from reserve market trading in €

\(R^{\textit{spot}}\) :

Sum of revenues from spot market trading in €

\({{\textit{WD}}}_{\textit{t,a}}\) :

Electricity withdrawn from the grid into the area in kW

VC :

Sum of variable operation cost in €

References

  1. Reeg, M., Hauser, W., Wassermann, S., Kast, T., Klann, U., Nienhaus, K., Pfenning, U., Weimer-Jehle, W.: AMIRIS: An agent-based simulation model for the analysis of different support schemes and their effects on actors involved in the integration of renewable energies into energy markets, pp S.339–344. In: 23rd International Workshop on Database and Expert Systems Applications (DEXA), 2012, Vienna (2012)

  2. Nordensvärd, J., Urban, F.: The stuttering energy transition in Germany: wind energy policy and feed-in tariff lock-in. Energy Policy (2015). https://doi.org/10.1016/j.enpol.2015.03.009

  3. de Vos, K.: Negative wholesale electricity prices in the German, French and Belgian day-ahead, intra-day and real-time markets. Electr. J. (2015). https://doi.org/10.1016/j.tej.2015.04.001

  4. Trepper, K., Weber, C., Kallen, D.: Integrationsmanagement für Erneuerbare Energien—Dezentrale Koordination im Strommarkt der Zukunft. uwf. UmweltWirtschaftsForum (2013). https://doi.org/10.1007/s00550-013-0292-1

  5. Agricola, A.-C., Höflich, B., Richard, P., Völker, J., Rehtanz, C., Greve, M., Gwisdorf, B., Kays, J., Noll, T., Schwippe, J., Seack, A., Teuwsen, J., Brunekreeft, G., Meyer, R., Liebert, V.: Dena-Verteilnetzstudie. Ausbau- und Innovationsbedarf der Stromverteilnetze in Deutschland bis 2030. Deutsche Energie-Agentur GmbH (dena) (2012)

  6. Büchner, J., Katzfey, J., Flörcken, O., Moser, A., Schuster, H., Dierkes, S., Leeuwen, T., van Verheggen, L., Amelsvoort, M., van Uslar, M.: Smart grids in Germany: how much costs do distribution grids cause at planning time? In: IEEE (ed.) International Symposium on Smart Electric Distribution Systems and Technologies (EDST), Wien, 08 Sep–11 Sep 2015, pp. 224–229 (2015). https://doi.org/10.1109/SEDST.2015.7315211

  7. Gottwalt, S., Ketter, W., Block, C., Collins, J., Weinhardt, C.: Demand side management—a simulation of household behavior under variable prices. Clean Cook. Fuels Technol. Dev. Econ. (2011). https://doi.org/10.1016/j.enpol.2011.10.016

  8. Thomsen, J., Roulland, A., Hartmann, N.: Economic viability of smart grid technologies in households. In: Energy Economics Group (ed.) IEWT 2015. Energiesysteme im Wandel: Evolution oder Revolution?, vol. 9. Internationale Energiewirtschaftstagung, Wien, 11 Feb–13 Feb 2015 (2015)

  9. Klobasa, M.: Dynamische Simulation eines Lastmanagements und Integration von Windenergie in ein Elektrizitätsnetz auf Landesebene unter regelungstechnischen und Kostengesichtspunkten. Dissertation, Eidgenössische Technische Hochschule, Zürich (2007)

  10. Klobasa, M., Angerer, G., Lüllmann, A., Schleich, J.: Lastmanagement als Beitrag zur Deckung des Spitzenlastbedarfs in Süddeutschland. Agora Energiewende. http://www.agora-energiewende.de/fileadmin/downloads/publikationen/Studien/Lastmanagementstudie/Agora_Studie_Lastmanagement_Sueddeutschland_Endberichtweb.pdf. Accessed 16 Apr 2015 (2013)

  11. Zinaman, O., Miller, M., Adil, A., Arent, D., Cochran, J., Vora, R., Aggarwal, S., Bipath, M., Linvill, C., Kauffman, R., Futch, M., Arcos, E.V., Valenzuela, J.M., Martinot, E., Bazilian, M., Kumar Pillai, R.: Power systems of the future: a 21st century power partnership thought leadership report. In: A 21st Century Power Partnership Thought Leadership Report. National Renewable Energy Laboratory NREL (2015)

  12. Allegrini, J., Orehounig, K., Mavromatidis, G., Ruesch, F., Dorer, V., Evins, R.: A review of modeling approaches and tools for the simulation of district-scale energy systems. Renew. Sustain. Energy Rev. (2015). https://doi.org/10.1016/j.rser.2015.07.123

  13. Morvaj, B., Evins, R., Carmeliet, J.: Optimization framework for distributed energy systems with integrated electrical grid constraints. Appl. Energy (2016). https://doi.org/10.1016/j.apenergy.2016.03.090

  14. Ren, H., Gao, W.: A MILP model for integrated plan and evaluation of distributed energy systems. Appl. Energy (2010). https://doi.org/10.1016/j.apenergy.2009.09.023

  15. Ruan, Y., Liu, Q., Zhou, W., Firestone, R., Gao, W., Watanabe, T.: Optimal option of distributed generation technologies for various commercial buildings. Appl. Energy (2009). https://doi.org/10.1016/j.apenergy.2009.01.016

  16. Porkar, S., Poure, P., Abbaspour-Tehrani-fard, A., Saadate, S.: A novel optimal distribution system planning framework implementing distributed generation in a deregulated electricity market. Electr. Power Syst. Res. 8, 828–837 (2010)

    Article  MATH  Google Scholar 

  17. Yang, Y., Zhang, S., Xiao, Y.: Optimal design of distributed energy resource systems coupled with energy distribution networks. Energy (2015). https://doi.org/10.1016/j.energy.2015.03.101

  18. Göransson, L., Johnsson, F.: Dispatch modeling of a regional power generation system—integrating wind power. Renew. Energy (2009). https://doi.org/10.1016/j.renene.2008.08.002

  19. Swider, D.J., Weber, C., Barth, R.: The value of wind energy in the European Electricity Market—application of a stochastic fundamental model. In: European Wind Energy Conference & Exhibition Proceedings. European Wind Energy Conference & Exhibition, London, 22 Nov–25 Nov 2004 (2004)

  20. Mai, T., Drury, E., Eurek, K., Bodington, N., Lopez, A., Perry, A.: NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract no. DE-AC36-08GO28308 Resource Planning Model: An Integrated Resource Planning and Dispatch Tool for Regional Electric Systems. https://pdfs.semanticscholar.org/0a25/3c4a461e7021317f9727a7d2fcacdca92cf7.pdf. Accessed 7 Feb 2017 (2013)

  21. Connolly, D., Lund, H., Mathiesen, B.V., Leahy, M.: A review of computer tools for analysing the integration of renewable energy into various energy systems. Appl. Energy (2010). https://doi.org/10.1016/j.apenergy.2009.09.026

  22. Herbst, A., Toro, F., Reitze, F., Jochem, E.: Introduction to energy systems modeling. Swiss J. Econ. Stat. 148(2) (2012)

  23. Fazlollahi, S., Becker, G., Maréchal, F.: Multi-objectives, multi-period optimization of district energy systems: III. Distribution networks. In: Selected Papers from ESCAPE-23 (European Symposium on Computer Aided Process Engineering-23), 9-12 June 2013, Lappeenranta (2014). https://doi.org/10.1016/j.compchemeng.2014.02.018

  24. Asensio, M., Quevedo, P.M.D., Munoz-Delgado, G., Contreras, J.: Joint distribution network and renewable energy expansion planning considering demand response and energy storage—Part I: stochastic programming model. IEEE Trans. Smart Grid. (2016). https://doi.org/10.1109/TSG.2016.2560339

  25. Eggers, J.-B., Stryi-Hipp, G.: KomMod as a tool to support municipalities on their way to becoming smart energy cities. In: Passer, A., Höfler, K., Maydl, P. (eds.) Proceedings of the Sustainable Buildings, Construction Products & Technologies Conference 2013, 25–28 Sep 2013, Graz University of Technology, Austria, pp. 580–591. Verlag der Technischen Universität Graz (2013). https://doi.org/10.3217/978-3-85125-301-6

  26. Bakken, B.H., Skjelbred, H.I., Wolfgang, O.: eTransport: investment planning in energy supply systems with multiple energy carriers. Energy (2007). https://doi.org/10.1016/j.energy.2007.01.003

  27. Naderi, E., Seifi, H., Sepasian, M.S.: A dynamic approach for distribution system planning considering distributed generation. IEEE Trans. Power Deliv. (2012). https://doi.org/10.1109/TPWRD.2012.2194744

  28. Becerra-López, H.R., Golding, P.: Multi-objective optimization for capacity expansion of regional power-generation systems: Case study of far west Texas. Energy Convers. Manag. (2008). https://doi.org/10.1016/j.enconman.2007.12.021

  29. Zou, K., Agalgaonkar, A.P., Muttaqi, K.M., Perera, S. (eds.): Multi-objective optimisation for distribution system planning with renewable energy resources. In: 2010 IEEE International Energy Conference (2010)

  30. Samadi, M., Javidi, M.H., Ghazizadeh, M.S.: Modeling the effects of demand response on generation expansion planning in restructured power systems. J. Zhejiang Univ. Sci. C. (2013). https://doi.org/10.1631/jzus.C1300008

  31. Muñoz-Delgado, G., Contreras, J., Arroyo, J.M.: Joint expansion planning of distributed generation and distribution networks. IEEE Trans. Power Syst. (2015). https://doi.org/10.1109/TPWRS.2014.2364960

  32. Kazerooni, A.K., Mutale, J.: Network investment planning for high penetration of wind energy under demand response program. In: Proceedings of 2010 IEEE 11th International Conference on Probabilistic Methods Applied to Power Systems (2010)

  33. Koltsaklis, N.E., Georgiadis, M.C.: A multi-period, multi-regional generation expansion planning model incorporating unit commitment constraints. Appl. Energy (2015). https://doi.org/10.1016/j.apenergy.2015.08.054

  34. Dietrich, K., Latorre, J.M., Olmos, L., Ramos, A.: Demand response and its sensitivity to participation rates and elasticities. In: 2011 8th International Conference on the European Energy Market (EEM), Zagreb, Croatia (2011). https://doi.org/10.1109/EEM.2011.5953103

  35. Lohmann, T., Rebennack, S.: Tailored benders decomposition for a long-term power expansion model with short-term demand response. Manag. Sci. (2017). https://doi.org/10.1287/mnsc.2015.2420

  36. Bakari, K.E., Kling, W.L.: Fitting distributed generation in future power markets through virtual power plants. In: 9th International Conference on the European Energy Market, Florence (2012). https://doi.org/10.1109/EEM.2012.6254692

  37. Eggers, J.-B., Stryi-Hipp, G., Herkel, S.: A spatial resolution in four levels for a techno-economic municipal energy system model. In: Mathur, J., Garg, V. (eds.) Proceedings of Building Simulation 2015, 14th International Conference of IBPSA, Hyderabad. Building Simulation 2015, Hyderabad, pp. 2080–2087. International Building Performance Simulation Association (2015)

  38. Statista GmbH: Anzahl der Stromnetzbetreiber in Deutschland in den Jahren 2006 bis 2016. https://de.statista.com/statistik/daten/studie/152937/umfrage/anzahl-der-stromnetzbetreiber-in-deutschland-seit-2006/. Accessed 10 Jul 2017

  39. Consentec GmbH: Beschreibung von Regelleistungskonzepten und Regelleistungsmarkt. Studie im Auftrag der deutschen Übertragungsnetzbetreiber, Aachen. http://www.consentec.de/wp-content/uploads/2014/08/Consentec_50Hertz_Regelleistungsmarkt_de_201402271.pdf. Accessed 18 Mar 2015 (2014)

  40. 50Hertz Transmission GmbH, Amprion GmbH, TransnetBW GmbH, TenneT TSO gmbH: regelleistung.net. Internetplattform zur Vergabe von Regelleistung. https://www.regelleistung.net/ip/action/index (2015)

  41. Quaschning, V.: Regenerative Energiesysteme: Technologie—Berechnung—Simulation. Carl Hanser, München (2013)

    Book  Google Scholar 

  42. National Renewable Energy Laboratory NREL: System advisor model (SAM).https://sam.nrel.gov/. Accessed 10 Jul 2017 (2017)

  43. Morales-España, G., Latorre, J.M., Ramos, A.: Tight and compact MILP formulation of start-up and shut-down ramping in unit commitment. IEEE Trans. Power Syst. (2013). https://doi.org/10.1109/TPWRS.2012.2222938

  44. Kleinhans, D.: Towards a systematic characterization of the potential of DSM (2014). arXiv:1401.4121

  45. Krishnan, V., Ho, J., Hobbs, B.F., Liu, A.L., McCalley, J.D., Shahidehpour, M., Zheng, Q.P.: Co-optimization of electricity transmission and generation resources for planning and policy analysis: review of concepts and modeling approaches. Energy Syst. (2016). https://doi.org/10.1007/s12667-015-0158-4

  46. Groschke, M., Eßer, A., Möst, D., Fichtner, W.: Neue Anforderungen an optimierende Energiesystemmodelle für die Kraftwerkseinsatz- und Zubauplanung bei begrenzten Netzkapazitäten. ZS Energ. Wirtsch. (2009). https://doi.org/10.1007/s12398-009-0002-4

  47. Krishnan, V., Das, T.: Optimal allocation of energy storage in a co-optimized electricity market: benefits assessment and deriving indicators for economic storage ventures. Energy. (2015). https://doi.org/10.1016/j.energy.2014.12.016

  48. Rinn, L.M.: Analyse und Bewertung von Wärmeerzeugung aus Strom im Kontext eines integrierten Energieversorgungskonzepts für eine Großwohnsiedlung unter Berücksichtigung von Speichern und Netzen. Master-thesis, TU Darmstadt (2016)

  49. Schulz, A.: Aggregation & Vermarktung dezentraler Flexibilitäten. Universität Duisburg-Essen, Qualitative Analyse der Akteure und Rollen im Verteilnetz, Masterarbeit (2015)

  50. Saad Hussein, N.: Optimizing energy efficiency and renewable energy deployment by a sector coupling operation and expansion model. Energy Syst. (submitted) (2017)

Download references

Acknowledgements

This work has been partially supported by the German Federal Ministry for Economic Affairs and Energy in the context of the project “Netzbewirtschaftung als neue Marktrolle” (project 03ET4018A). The remaining works have been supported by a scholarship from “Studienförderwerk Klaus Murmann”. For insightful discussions and proof-reading, I thank C. Weber, N. Hussein, N. Hartmann and C. Kost.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Thomsen.

Appendix

Appendix

1.1 Abbreviations

AC

Alternating current

DC

Direct current

DSM

Demand side management

PV

Photovoltaic

PTDF

Power transfer distribution factor

RE

Renewable energy

LV

Low voltage

SoC

State of charge

sn

Negative secondary reserve

sp

Positive secondary reserve

mn

Negative minute reserve

mp

Positive minute reserve

CHP

Combined heat and power

1.2 Limiting factors for the DSM sensitivity analysis

As a factor used to limit the available DSM capacity, the parameter \({lim}_{\textit{dsm}}^{\textit{cap}}\) is introduced into the original equation presented in Sect. 2.5. The factor takes on a number between one (for full capacity) and zero (i.e. no capacity).

Similarly it is used to limit the DSM potential

$$\begin{aligned} {CH}_{a,dsm,t}\le {lim}_{dsm}^{cap}\cdot ({dem}_{a}^{pl,max}-{dem}_{a,t}^{pl}) \end{aligned}$$
(4.1)
$$\begin{aligned} {DCH}_{a,dsm,t}\le {lim}_{dsm}^{cap}\cdot {dem}_{a,t}^{pl} \end{aligned}$$
(4.2)
$$\begin{aligned} {soc}_{a,dsm,t}^{max}={lim}_{dsm}^{cap}\cdot \sum \nolimits _t^{t+{dt}_{a,t}} {({dem}_{a,t}^{pl}} \cdot \varDelta t) \end{aligned}$$
(4.3)
$$\begin{aligned} {soc}_{a,dsm,t}^{min}={lim}_{dsm}^{cap}\cdot \sum \nolimits _{t-{dt}_{a,t}}^t {({dem}_{a,t}^{pl}\cdot \varDelta t)} \end{aligned}$$
(4.4)

1.3 Additional results data

The total numbers of the four base scenarios are displayed in Table 6.

Table 6 System operation cost and trade balance for the spot and reserve market in € for each scenario

To determine the usage of single transport lines, the amount of changes in directions, represented by the sign of the difference between the power flow at t and t\(-1\), is summed up over the year and divided by the number of time-steps times two, since each direction change results in a value of two.

$$\begin{aligned}&{\textit{Direction change factor}}\\&\quad =\frac{\sum \nolimits _{\textit{t=2}}^t {(| sgn( {EX}_{\textit{t,a,aj}}-{IM}_{\textit{t,a,aj}} )-sgn({EX}_{\textit{t-1,a,aj}}-{IM}_{\textit{t-1,a,aj}}) |)} }{2\cdot n} \end{aligned}$$

The Result is displayed in Table 6.

Table 7 Share of time-steps with a change in power flow direction on each line for the different scenarios
Table 8 Magnitude of change in power flows between time-steps on each line for the different scenarios

To measure the changes in power flow magnitude, the following formula is used. The formula accounts of power flows between time-steps. The square prevents the direction from distorting the result.

$$\begin{aligned} {\textit{Fluctuation Factor}}=\frac{\mathop {\sum }\nolimits _{t} {(( {{\textit{EX}}}_{\textit{t,a,aj}}-{{\textit{IM}}}_{\textit{t,a,aj}} )-( {{\textit{EX}}}_{\textit{t-1,a,aj}}-{{\textit{IM}}}_{\textit{t-1,a,aj}} ))^{\textit{2}}} }{\mathop {\sum }\nolimits _{t} {({EX}_{\textit{t,a,aj}}-{{\textit{IM}}}_{\textit{t,a,aj}})^{\textit{2}}} } \end{aligned}$$

The results are displayed in Tables 7 and 8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomsen, J. Enhancing operation of decentralized energy systems by a regional economic optimization model DISTRICT. Energy Syst 9, 669–707 (2018). https://doi.org/10.1007/s12667-017-0261-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-017-0261-9

Keywords

Navigation