Skip to main content
Log in

Microstructure Evolution and Microhardness of AlxNi2−xCoCrFe Alloys After Long-Time Annealing

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The phase constituents of AlxNi2−xCoCrFe (x = 0.25−1.75) alloys were thermodynamically calculated and experimentally investigated. The experimental results indicate that when 0.5 ≤ x < 1.0, the as-cast AlxNi2−xCoCrFe alloys consist of fcc + B2 phase, with the volume fraction of fcc phase decreasing as the Al content increases. When x ≥ 1.0, the as-cast alloys contain only the B2 phase. After 1000 °C annealing, large bcc blocks precipitate in the alloy Al1.25Cr0.75CoFeNi, with an increase Al content in the B2 phase. After 800 °C annealing, very fine B2 and or σ particles precipitated from the as-cast fcc phase when 0.5 ≤ x < 1.0, and Al-poor bcc phase precipitated from the as-cast B2 phase. Moreover, the hardness of the as-cast or 800 °C annealed AlxNi2−xCoCrFe alloys increased linearly with increasing Al content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang G J, Tian Q W, Yin K X, Niu S Q, and Huang J C, Intermetallics 119 (2020) 106722. https://doi.org/10.1016/j.intermet.2020.106722

    Article  CAS  Google Scholar 

  2. Meghwal A, Anupam A, and Luzin V, J Alloy Compd 854 (2021) 157140. https://doi.org/10.1016/j.jallcom.2020.157140

    Article  CAS  Google Scholar 

  3. Wei Z, Wu Y, Hong S, Cheng J, and Zhu S, Surf Coat Tech 409 (2021) 126899. https://doi.org/10.1016/j.surfcoat.2021.126899

    Article  CAS  Google Scholar 

  4. Wang W R, Wang W L, Wang S C, Tsai Y C, and Yeh J W, Intermetallics 26 (2012) 44. https://doi.org/10.1016/j.intermet.2012.03.005

  5. Yen C C, Lu H N, Tsai M H, and Yen S K, Corros Sci 157 (2019) 462. https://doi.org/10.1016/j.corsci.2019.06.024

    Article  CAS  Google Scholar 

  6. Chuang M H, Tsai M H, Wang W R, Lin S J, and Yeh J W, Acta Mater 59 (2011) 6308. https://doi.org/10.1016/j.actamat.2011.06.041

    Article  CAS  Google Scholar 

  7. Chen Y, Ji Z, Hu M, Xu H, and Feng G, J Mater Res 112 (2021) 538. https://doi.org/10.1515/ijmr-2020-7953

    Article  CAS  Google Scholar 

  8. Linden Y, Pinkas M, Munitz A, and Meshi L, Scr Mater 139 (2017) 49. https://doi.org/10.1016/j.scriptamat.2017.06.015

    Article  CAS  Google Scholar 

  9. Meshi L, Linden Y, Munitz A, Salhov S, and Pinkas M, Mater Charact 148 (2019) 171. https://doi.org/10.1016/j.matchar.2018.12.010

    Article  CAS  Google Scholar 

  10. Strumza E, and Hayun S, J Alloy Compd 856 (2021) 158220. https://doi.org/10.1016/j.jallcom.2020.158220

    Article  CAS  Google Scholar 

  11. Lee K S, Kang J H, Lim K R, and Na Y S, Mater Charact 132 (2017) 162. https://doi.org/10.1016/j.matchar.2017.08.010

    Article  CAS  Google Scholar 

  12. Zhou P F, Xiao D H, Wu Z, and Song M, Mater Res Express 6 (2019) 0865e7 https://doi.org/10.1088/2053-1591/ab2517

  13. Wang Y P, Li B S, Ren M X, Yang C, and Fu H Z, Mater Sci Eng A 491 (2008) 154. https://doi.org/10.1016/j.msea.2008.01.064

    Article  CAS  Google Scholar 

  14. Munitz A, Salhov S, Hayun S, and Frage N, J Alloy Compd 683 (2016) 221. https://doi.org/10.1016/j.jallcom.2016.05.034

    Article  CAS  Google Scholar 

  15. Shivam V, Basu J, Pandey V K, Shadangi Y, and Mukhopadhyay N K, Adv Eng Mater 29 (2018) 2221. https://doi.org/10.1016/j.apt.2018.06.006

    Article  CAS  Google Scholar 

  16. Shivam V, Sanjana V, and Mukhopadhyay N K, Trans Indian Inst Metal (2020). https://doi.org/10.1007/s12666-020-01892-1

    Article  Google Scholar 

  17. Pradhan P, Shadangi Y, Shivam V, and Mukhopadhyay N K, J Alloy Compd 35 (2023) 168002. https://doi.org/10.1016/j.jallcom.2022.168002

    Article  CAS  Google Scholar 

  18. Shivam V, Shadangi Y, Basu J, and Mukhopadhyay N K, J Alloy Compd 832 (2020) 154826. https://doi.org/10.1016/j.jallcom.2020.154826

    Article  CAS  Google Scholar 

  19. Sourav A, Yebaji S, and Thangaraju S, Mater Sci Eng A 793 (2020) 139877. https://doi.org/10.1016/j.msea.2020.139877

    Article  CAS  Google Scholar 

  20. Joseph J, Haghdadi N, Shamlaye K, Hodgson P, and Fabijanic D, Wear 428 (2019) 32. https://doi.org/10.1016/j.wear.2019.03.002

    Article  CAS  Google Scholar 

  21. Rao J C, Diao H Y, Ocelík V, and De Hosson J T M, Acta Mater 131 (2017) 206. https://doi.org/10.1016/j.actamat.2017.03.066

    Article  CAS  Google Scholar 

  22. Wang W-R, Wang W-L, and Yeh J-W, J Alloy Compd 589 (2014) 143. https://doi.org/10.1016/j.jallcom.2013.11.084

    Article  CAS  Google Scholar 

  23. Huang L, Sun Y, Amar A, Wu C, and Li J, Vacuum 183 (2021) 109875. https://doi.org/10.1016/j.vacuum.2020.109875

    Article  CAS  Google Scholar 

  24. Garlapati M M, Vaidya M, Karati A, Mishra S, and Murty B S, Adv Powder Technol 31 (2020) 1985. https://doi.org/10.1016/j.apt.2020.02.032

    Article  CAS  Google Scholar 

  25. Shi Y, Mo J, Zhang F Y, Yang B, and Zhao Y, J Alloy Compd 844 (2020) 156014. https://doi.org/10.1016/j.jallcom.2020.156014

    Article  CAS  Google Scholar 

  26. Shi Y, Collins L, Feng R, Zhang C, and Yang B, Corros Sci 133 (2018) 131. https://doi.org/10.1016/j.corsci.2018.01.030

    Article  CAS  Google Scholar 

  27. Yang Y, Luo X, Ma T, Wen L, and Hu M, J Alloy Compd 864 (2021) 158717. https://doi.org/10.1016/j.jallcom.2021.158717

    Article  CAS  Google Scholar 

  28. Yang Y C, Liu C, Lin C Y, and Xia Z, Scr Mater 178 (2020) 181. https://doi.org/10.1016/j.scriptamat.2019.11.016

    Article  CAS  Google Scholar 

  29. Yang T, Xia S, Liu S, Wang C, and Wang Y, Mater Sci Eng A 648 (2015) 22. https://doi.org/10.1016/j.msea.2015.09.034

    Article  CAS  Google Scholar 

  30. Qiu J, Xiao G, Jin T, Su B, and Ma S, Adv Mater Sci Eng 21 (2019) 1800744. https://doi.org/10.1002/adem.201800744

    Article  CAS  Google Scholar 

  31. Muskeri S, Choudhuri D, Jannotti P A, Schuster B E, and Mukherjee S, Adv Mater Sci Eng 22 (2020) 2000124. https://doi.org/10.1002/adem.202000124

    Article  CAS  Google Scholar 

  32. Li J, Yang H, Wang W Y, Kou H, and Wang J, Front Mater (2021). https://doi.org/10.3389/fmats.2020.585602

  33. Kuczyk M, Kotte L, Kaspar J, Zimmermann M, and Leyens C, Front Mater (2020). https://doi.org/10.3389/fmats.2020.00242

  34. John R, Karati A, Garlapati M M, Vaidya M, and Murty B S, J Mater Sci 54 (2019) 14588. https://doi.org/10.1007/s10853-019-03917-7

    Article  CAS  Google Scholar 

  35. Hou J, Wang Z, Shi X, Wang Z, and Wu Y, J Mater Sci 55 (2020) 7894. https://doi.org/10.1007/s10853-020-04550-5

    Article  CAS  Google Scholar 

  36. Wang X, Zhang Z, Wang Z, and Ren X, Mater 15 (2022) 1215.

    Article  CAS  Google Scholar 

  37. Chen Q, Zhou K, Jiang L, Lu Y, and Li T, Arab J Sci Eng 40 (2015) 3657. https://doi.org/10.1007/s13369-015-1784-9

    Article  CAS  Google Scholar 

  38. Mayahi R, J Alloy Compd 818 (2020) 152928. https://doi.org/10.1016/j.jallcom.2019.152928

    Article  CAS  Google Scholar 

  39. Kaya F, Yetiş M, Selimoğlu G İ, and Derin B, Eng Sci Technol (2021). https://doi.org/10.1016/j.jestch.2021.05.007

    Article  Google Scholar 

  40. Kang M, Lim K R, Won J W, and Na Y S, J Alloy Compd 769 (2018) 808. https://doi.org/10.1016/j.jallcom.2018.07.346

    Article  CAS  Google Scholar 

  41. Ma L, Wang J, and Jin P, Mater Res Express 7 (2020) 016566. https://doi.org/10.1088/2053-1591/ab6580

    Article  CAS  Google Scholar 

  42. Zhang L, and Zhang Y, Front Mater 7 (2020) 92. https://doi.org/10.3389/fmats.2020.00092

    Article  Google Scholar 

  43. Qin G, Xue W, Fan C, Chen R, and Guo J, Mater Sci Eng A 710 (2018) 205. https://doi.org/10.1016/j.msea.2017.10.088

    Article  CAS  Google Scholar 

  44. Li C, Li J C, Zhao M, and Jiang Q, J Alloy Compd 504 (2010) S515. https://doi.org/10.1016/j.jallcom.2010.03.111

    Article  Google Scholar 

  45. Ma Y, Hao J, Wang Q, Zhang C, and Dong C, J Mater Sci 54 (2019) 8696. https://doi.org/10.1007/s10853-019-03459-y

    Article  CAS  Google Scholar 

  46. Shadangi Y, Chattopadhyay K, and Mukhopadhyay N K, J Mater Res 38 (2023) 248. https://doi.org/10.1557/s43578-022-00866-x

    Article  CAS  Google Scholar 

  47. Jain H, Shadangi Y, Chakravarty D, Dubey A K, and Mukhopadhyay N K, Mater Sci Eng A 856 (2022) 144029. https://doi.org/10.1016/j.msea.2022.144029

    Article  CAS  Google Scholar 

  48. Lu Y, Dong Y, Guo S, Jiang L, and Li T, Sci Rep 4 (2014) 6200. https://doi.org/10.1038/srep06200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang L, Yao C, Shen J, Zhang Y, and Zhang G, Intermetallics 118 (2020) 106681. https://doi.org/10.1016/j.intermet.2019.106681

    Article  CAS  Google Scholar 

  50. Gao X, Lu Y, Zhang B, Liang N, and Zhao Y, Acta Mater 141 (2017) 59. https://doi.org/10.1016/j.actamat.2017.07.041

    Article  CAS  Google Scholar 

  51. Wani I S, Bhattacharjee T, Sheikh S, Bhattacharjee P P, and Tsuji N, Mater Sci Eng A 675 (2016) 99. https://doi.org/10.1016/j.msea.2016.08.048

    Article  CAS  Google Scholar 

  52. Tang Z, Senkov O N, Parish C M, Zhang C, and Liaw P K, Mater Sci Eng A 647 (2015) 240. https://doi.org/10.1016/j.msea.2015.08.078

    Article  CAS  Google Scholar 

  53. Muthupandi G, Lim K R, Na Y S, Park J, and Choi Y S, Sci Eng A 696 (2017) 154. https://doi.org/10.1016/j.msea.2017.04.045

    Article  CAS  Google Scholar 

  54. Lim K R, Lee K S, Lee J S, Kim J Y, and Na Y S, J Alloy Compd 728 (2017) 1238. https://doi.org/10.1016/j.jallcom.2017.09.089

    Article  CAS  Google Scholar 

  55. Zhang C, Zhang F, Diao H, Gao M C, and Liaw P K, Mater Des 109 (2016) 425. https://doi.org/10.1016/j.matdes.2016.07.073

    Article  CAS  Google Scholar 

  56. Borkar T, Chaudhary V, Gwalani B, Choudhuri D, and Banerjee R, Adv Eng Mater 19 (2017) 1700048. https://doi.org/10.1002/adem.201700048

    Article  CAS  Google Scholar 

  57. Sun Y, Wu C, Peng H, Liu Y, and Su X, J Phase Equilib Diff 40 (2019) 714. https://doi.org/10.1007/s11669-019-00761-9

    Article  CAS  Google Scholar 

  58. Xiong W, Wu C J, Liu Y, Tu H P, and Su X P, J Phase Equilib Diff 42 (2021) 388. https://doi.org/10.1007/s11669-021-00890-0

    Article  CAS  Google Scholar 

  59. Wang S, Zhao Y, Cheng P, Guo Q, and Hou H, Mater Res Express 6 (2020) 1265e2. https://doi.org/10.1088/2053-1591/ab3d86

  60. Wu C, Wei X, Zhou C, Liu Y, and Su X, J Changzhou university (Natural Sci Edition) 33 (2021) 1.

  61. Laplanche G, Berglund S, Reinhart C, Kostka A, Fox F, and George E P, Acta Mater 161 (2018) 338. https://doi.org/10.1016/j.actamat.2018.09.040

    Article  CAS  Google Scholar 

  62. Zhu Z G, Ma K H, Yang X, and Shek C H, J Alloy Compd 695 (2017) 2945. https://doi.org/10.1016/j.jallcom.2016.11.376

    Article  CAS  Google Scholar 

  63. Yamamoto Y, Brady M P, Santella M L, Bei H, and Pint B A, Mater Trans A 42 (2011) 931. https://doi.org/10.1007/s11661-010-0295-2

    Article  CAS  Google Scholar 

  64. Shadangi Y, Shivam V, Chattopadhyay K, and Mukhopadhyay N K, J Manuf Mater Process 6 (2022) 60. https://doi.org/10.3390/jmmp6030060

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support from National Natural Science Foundation of China (Nos. 51971039 and 52271005) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Corresponding author

Correspondence to Changjun Wu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest regarding this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Ding, Z., Peng, H. et al. Microstructure Evolution and Microhardness of AlxNi2−xCoCrFe Alloys After Long-Time Annealing. Trans Indian Inst Met (2024). https://doi.org/10.1007/s12666-024-03311-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-024-03311-1

Keywords

Navigation