Skip to main content
Log in

Evolution and Transformation of Inclusions in Calcium-Treated Low-Carbon Si–Mn-Killed Steel

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this study, industrial trials were conducted on Si–Mn-killed steels to study the evolution of inclusions and their transformation in steel to meet stringent steel quality. It is observed that inclusions modify along the route of ‘‘MnO–SiO2-based inclusions to CaO–Al2O3-based inclusions after calcium treatment and further transformed to CaO–SiO2–Al2O3-based inclusions’’ in billet stage. As more dissolved oxygen is present in Si-killed steel compared to Al-killed steel; a new generation of SiO2 is taking place during solidification that too adjacent to liquid oxide inclusions (in tundish samples) which are getting transformed to wollastonite and anorthite at the billet stage. The results obtained from industrial trails denoting calcium treatment in Si–Mn-killed steels has an efficient method to get better castability of liquid steel and also is affable to enhance deformation ability of inclusions in steel further during cold rolling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vasconcellos da Costa E, and Silva A L, J Mater Res Technol 8 (2019) 2408. https://doi.org/10.1016/j.jmrt.2019.01.009

    Article  CAS  Google Scholar 

  2. Lyu S, Ma X, Huang Z, Yao Z, Lee H G, Jiang Z, Wang G, Zou J, and Zhao B, Metall Mater Trans B 50 (2019) 1862. https://doi.org/10.1007/s11663-019-01613-0

    Article  CAS  Google Scholar 

  3. Chen C, Jiang Z, Li Y, Sun M, Wang Q, Chen K, and Li H, ISIJ Int 60 (2020) 617. https://doi.org/10.2355/isijinternational.ISIJINT-2019-513

    Article  CAS  Google Scholar 

  4. Zhang L, Steel Res Int 77 (2006) 158. https://doi.org/10.1002/srin.200606370

    Article  CAS  Google Scholar 

  5. He X F, Wang X H, Chen S H, Jiang M, Huang F X, and Wang W J, Ironmak Steelmak 41 (2014) 676. https://doi.org/10.1179/1743281214Y.0000000182

    Article  CAS  Google Scholar 

  6. Guo C, Ling H, Zhang L, Yang W, Ren Y, and Zhou H, Metall Res Technol 114 (2017) 602. https://doi.org/10.1051/metal/2017065

    Article  CAS  Google Scholar 

  7. Zhang L, Guo C, Yang W, Ren Y, and Ling H, Metall Mater Trans B 49 (2018) 803. https://doi.org/10.1007/s11663-017-1134-2

    Article  CAS  Google Scholar 

  8. Shang Z, Li T, Yang S, Yan J, and Guo H, J Mater Res Technol 9 (2020) 3686. https://doi.org/10.1016/j.jmrt.2020.01.106

    Article  CAS  Google Scholar 

  9. Ghosh A, Trans Indian Inst Metals 59 (2006) 635.

    CAS  Google Scholar 

  10. Holappa L E K, and Helle A S, J Mater Process Technol 53 (1995) 177. https://doi.org/10.1016/0924-0136(95)01974-J

    Article  Google Scholar 

  11. Liu C D, Bassim M N, and St Lawrence S, Mater Sci Eng A 167 (1993) 107. https://doi.org/10.1016/0921-5093(93)90343-D

    Article  Google Scholar 

  12. Jiang Q, Bertolo V M, Popovich V A, Sietsma J, and Walters Carey L, Int J Fract 232 (2021) 1. https://doi.org/10.1007/s10704-021-00587-y

    Article  Google Scholar 

  13. Choudhary S K, Kumar A, Ganguly S, Laru M, and Chacko E Z, ISIJ Int 58 (2018) 1811. https://doi.org/10.2355/isijinternational.ISIJINT-2018-388

    Article  CAS  Google Scholar 

  14. Zhang L, and Thomas Brian G, XXIV National Steel-making Symposium, Morelia, Mich Mexico 26 (2003) 28.

    Google Scholar 

  15. Kumar S, Mould thermal response and formation of defects in the continuous casting of steel billets, Vancouver, BC, University of British Columbia, Canada (1996).

    Google Scholar 

  16. Pinheiro, Carlos AM, Mould thermal response, billet surface quality and mould-flux behaviour in the continuous casting of steel billets with powder lubrication, PhD diss., University of British Columbia. 1997. https://doi.org/10.14288/1.0078507.

  17. Choudhary S K, and Ghosh A, ISIJ Int 48 (2008) 1552. https://doi.org/10.2355/isijinternational.48.1552

    Article  CAS  Google Scholar 

  18. Gollapalli V, Rao M V, Karamched P S, Borra C R, Roy G G, and Srirangam P, Ironmak Steelmak 46 (2019) 663. https://doi.org/10.1080/03019233.2018.1443382

    Article  CAS  Google Scholar 

  19. Liu Z, Song G, Deng Z, and Zhu M, Ironmak Steelmak 48 (2021) 893. https://doi.org/10.1080/03019233.2021.1889892

    Article  CAS  Google Scholar 

  20. Wang Y, Sun X, Zhang L, and Ren Y, J Mater Res Technol 9 (2020) 11351. https://doi.org/10.1016/j.jmrt.2020.08.017

    Article  CAS  Google Scholar 

  21. Liu Z, Song G, Deng Z, and Zhu M, Metall Mater Trans B 52 (2021) 1243. https://doi.org/10.1007/s11663-021-02074-0

    Article  CAS  Google Scholar 

  22. Shi C, and Hyun Park J, Metall Mater Trans 50 (2019) 1139. https://doi.org/10.1007/s11663-019-01564-6

    Article  CAS  Google Scholar 

  23. Li L, Cheng G, Hu B, Wang C-S, and Yuqian G, High Temp Mater Process 37 (2018) 521. https://doi.org/10.1515/htmp-2016-0188

    Article  CAS  Google Scholar 

  24. Deng Z, Cheng L, Chen L, and Zhu M, Steel Res Int 90 (2019) 1900268. https://doi.org/10.1002/srin.201900268

    Article  CAS  Google Scholar 

  25. Zhao J, Chu J, Liu X, Wang M, Cai X, Ma H, and Bao Y, Metals 12 (2022) 1323. https://doi.org/10.3390/met12081323

    Article  CAS  Google Scholar 

  26. Zhang Y, Ren Y, and Zhang L, Metall Res Technol 114 (2017) 308. https://doi.org/10.1051/metal/2017035

    Article  CAS  Google Scholar 

  27. Ma, Z, Control of non-metallic inclusions in continuously cast steels in view of macro-cleanliness, castability, precipitation modification and grain refinement, 2001.

  28. Jung I-H, Kang Y-B, Decterov S A, and Pelton A D, Metall Mater Trans B 35 (2004) 259. https://doi.org/10.1007/s11663-004-0027-3

    Article  Google Scholar 

  29. Chen J, Zhu Q, Huang D, Zheng S, Zhang J, and Li H, IOP Conf Ser Mater Sci Eng 230 (2017) 012030. https://doi.org/10.1088/1757-899X/230/1/012030

    Article  Google Scholar 

  30. Pretorius E B, Oltmann H G, and Cash T, Iron Steel Technol 7 (2010) 31.

    CAS  Google Scholar 

  31. Yang S F, Li J S, Wang Z F, Li J, and Lin L, Int J Miner Metall Mater 18 (2011) 18. https://doi.org/10.1007/s12613-011-0394-0

    Article  CAS  Google Scholar 

  32. Pistorius C, Presoly P, and Tshilombo K (2006) Magnesium: Origin and role in calcium-treated inclusions, in TMS Fall Extraction & Processing Meeting. Sohn International Symposium on Advanced Processing of Metals and Materials: Principles, Technologies and Industrial Practice, 2006.

  33. Chen S H, Jiang M, He X F, and Wang X H, Int J Miner Metall Mater 19 (2012) 490. https://doi.org/10.1007/s12613-012-0585-3

    Article  CAS  Google Scholar 

  34. Kang Y-B, and Lee H-G, ISIJ Int 44 (2004) 1006. https://doi.org/10.2355/isijinternational.44.1006

    Article  CAS  Google Scholar 

  35. Maeda S, Soejima T, Saito T, Matsumoto H, Fujimoto H, Mimura T (1989) Shape control of inclusions in wire rods for high tensile tire cord by refining with synthetic slag, Steel-making Conference Proceedings, 72:p.379–386.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veerababu Gollapalli.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 255 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gollapalli, V., Pathak, R.K., Mandalika, B.V.R. et al. Evolution and Transformation of Inclusions in Calcium-Treated Low-Carbon Si–Mn-Killed Steel. Trans Indian Inst Met (2024). https://doi.org/10.1007/s12666-024-03308-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-024-03308-w

Keywords

Navigation