Skip to main content
Log in

Prediction Model for Viscosity of Titanium-Bearing Slag Based on the HIsmelt Process

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

With the development of “Industry 4.0”, artificial intelligence technology is gradually being applied in the steel industry. In actual production, there is a serious lag in viscosity measurement methods. First, this paper used big data technology to analyze and process the viscosity test data and then established prediction models based on the CatBoost model and the LSTM model, respectively, for the viscosity of the titanium-bearing slag. Finally, the information entropy method was used to integrate the results, and an integrated model was established to predict the viscosity of the titanium-bearing slag. The results showed that the integrated model had better performance than the other two single models, with a prediction accuracy of 96.04% and an improvement of 2.06–5.49% compared with the prediction accuracy of the single models. The results show that the integrated model has more practical significance in guiding production practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang S S, Wang Z Y, Hu P, Rao J T, Zong Y B, and Pang J, Trans. Nonferrous Met. Soc. China 1 (2022) 1.

    Google Scholar 

  2. Zhang S S, Hu P, Rao J T, Wang Z Y, Zong Y B, and Zhang J L, Metals 12 (2022) 1019.

    Article  Google Scholar 

  3. Xu S G, Li Z M, and Lyu Q, Ironmaking (China) 26 (2007) 59.

    Google Scholar 

  4. Goodman N, Dry R, presented at Proceedings of the 5th International Congress on the Science and Technology of Ironmaking, Shanghai, (2009).

  5. Gao Y J, Liu R, Lan C C, Chen S J, Wang Y, Yan G S, Lyu Q, Ironmak. Steelmak. (2023), 1.

  6. Wen Y P, Shu Q F, Lin Y, and Fabritius T, ISIJ Int. 63 (2023) 1.

    Article  CAS  Google Scholar 

  7. Bartzsch G, Christian R, Mohanty S R, Shukla A K, and Volkova O, Steel Res. Int. 94 (2023) 2200798.

    Article  CAS  Google Scholar 

  8. Gao H B, Tang J, Chu M S, Zhong S Y, Liu Z G, J. Iron. Steel Res. Int. (2023), 456.

  9. Zhang R, Hallström S, Mao H, Kjellqvist L, and Chen Q, ISIJ Int. 61 (2021) 1379.

    Article  CAS  Google Scholar 

  10. Du S, Bygdén J, and Seetharaman S, Metall. Mater. Trans. B. 25 (1994) 519.

    Article  Google Scholar 

  11. Suzuki M, and Jak E, ISIJ Int. 54 (2014) 2134.

    Article  CAS  Google Scholar 

  12. Kondratiev A, Hayes P C, and Jak E, ISIJ Int. 46 (2006) 368.

    Article  CAS  Google Scholar 

  13. Guo H W, Zhu M Y, Li X Y, Guo J, Du S, and Zhang J L, Metall. Mater. Trans. B. 46 (2014) 378.

    Article  Google Scholar 

  14. Guo H, Zhu M, Yan B, Deng S, Li X, and Liu F, JOM. 69 (2016) 395.

    Article  Google Scholar 

  15. Yan B, Liu Y, Shu Q, Deng T, and Glaser B, Metall. Mater. Trans. B. 50 (2018) 376.

    Article  Google Scholar 

  16. Chou K C, and Zhang G HMetall. Mater. Trans. B. 40 (2009) 22.

    Google Scholar 

  17. Hu K, Tang K, Lv X, Safarian J, Yan Z, Song B, Metall. Mater. Trans. B. 52 (2020) 245.

    Article  Google Scholar 

  18. Xin J J, Wang N, Chen M, and Lv X, J. Non-Cryst. Solids. 590 (2022) 121709.

    Article  Google Scholar 

  19. Oconnell J P, Lin S H, Mccabe S L, Smith J M, Radcliffe C J, Erickson L E, and Lightfoot E N, Chem. Eng. Sci. 48 (1993) 1703.

    Google Scholar 

  20. Renon H, and Prausnitz J M, AlChE J. 14 (1968) 135.

    Article  CAS  ADS  Google Scholar 

  21. Zhang Z W, Liang Q F, Wang Z Y, Yu G S, and Yu Z H, Comput. Appl. Chem. (China) 24 (2007) 609.

    Google Scholar 

  22. Zhang G H, Chou K C, J. Min. Metall. Sect. B. 48 (2012) 1.

    Article  Google Scholar 

  23. Duchesne M A, Macchi A, Lu D Y, Hughes R W, Mccalden D, and Anthony E J, Fuel Process. Technol. 91 (2010) 831.

    Article  CAS  Google Scholar 

  24. Jiang T, Tan P, Chen L, Zhang M, Wu M, and Zhang Y, Metall. Mater. Trans. B. 49 (2018) 2611.

    Article  Google Scholar 

  25. Urbain G, Steel Res. Int. 58 (1987) 111.

    Article  CAS  Google Scholar 

  26. Zhang H, Yin Y, and Zhang S, Neurocomputing. 174 (2016) 232.

    Article  Google Scholar 

  27. Su X, Zhang S, Yin Y, and Xiao W, Int. J. Mach. Learn. Cybern. 10 (2018) 2739.

    Article  Google Scholar 

  28. Zhang S, Jiang D, Wang Z, Wang F, Zhang J, Zong Y, and Zeng S, Metals. 13 (2023) 288.

    Article  Google Scholar 

  29. Matino I, Dettori S, Colla V, Weber V, and Salame S, Energy Proc. 158 (2019) 4043.

    Article  Google Scholar 

  30. Lima M S M, Eryarsoy E, and Delen D, Inform. J. Appl. Anal. 51 (2021) 213.

    Google Scholar 

  31. Li H, Liu X, Li X, Li H, Bu X, Chen S, and Lyu Q, ISIJ Int. 62 (2022) 2301.

    Article  CAS  Google Scholar 

  32. Jiang D, Zhang J, Wang Z, Feng C, Jiao K, and Xu R, JOM. 72 (2020) 3908.

    Article  ADS  Google Scholar 

  33. Jabeur S B, Gharib C, Mefteh-Wali S, and Arfi W B, Technol. Forecast. Soc. Change. 166 (2021) 120658.

    Article  Google Scholar 

  34. Hancock J T, and Khoshgoftaar T M, J. Big Data. 7 (2020) 94.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu W, Deng K, Zhang X, Cheng Y, Zheng Z, Jiang F, and Peng J, Symmetry. 12 (2020) 336.

    Article  ADS  Google Scholar 

  36. Yang J S, Zhao C Y, Yu H T, and Chen H Y, Proc. Comput. Sci. 174 (2020) 161.

    Article  Google Scholar 

  37. Yu Y, Si X, Hu C, and Zhang J, Neural Comput. 31 (2019) 1235.

    Article  MathSciNet  PubMed  Google Scholar 

  38. Li S, Li W Q, Cook C, Zhu C, Gao Y B, presented at 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2018).

  39. Gers F A, Schmidhuber J, presented at Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, Como, Italy, (2000).

Download references

Acknowledgements

This study was supported by the High-end Iron and Steel Metallurgy Joint Fund Project of Hebei Natural Science Foundation (NO. E2020209208), Chengde Science and Technology Plan (NO. 202205B060), Tangshan Science and Technology Plan (NO. 22130203H) and Graduate Student Innovation Fund of North China University of Science and Technology (NO. 2023B05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Liu.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Liu, R., Liu, X. et al. Prediction Model for Viscosity of Titanium-Bearing Slag Based on the HIsmelt Process. Trans Indian Inst Met (2024). https://doi.org/10.1007/s12666-024-03266-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-024-03266-3

Keywords

Navigation