Skip to main content
Log in

Development of Promising Steels for Railway Rails of a New Generation Using Modeling of Phase-Structural Transformations

  • Review
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Based on recent research, it is known that the strength of pearlitic rail steels has reached its limit. On the basis of the literature analysis, the steels used in the world practice for production of bainite railway rails have been identified and their comparison with the chemical composition of steels used in various areas in the world has been carried out. Regularities of austenite decomposition kinetics of 30HGS steel grade with 0.28% C, 1.49% Si, 0.92% Mn, 0.99% Cr have been investigated by the method of mathematical modeling. Analytically, using the developed model, the intervals of cooling rates, within which changes in the mechanism of structure formation during the decay of austenite are observed, are determined. Chemical composition of experimental steels for railway rails was developed and ingots were melted in laboratory conditions with fixing of cooling rate with subsequent study of microstructures.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Гyляeв, A. П. Meтaллoвeдeниe. Mocквa: Meтaллypгия, 1977, 647 c.

  2. Ueda M, and Matsuda K, Wear 444–445 (2020) 203120. https://doi.org/10.1016/j.wear.2019.203120

    Article  CAS  Google Scholar 

  3. Liu J, Li Y, Zhang Y, Hu Y, Shi L, Ding H, Wang W, Liu F, Zhou S, and Shi T, Mater (Basel, Switzerland) 13 (2020) 4678. https://doi.org/10.3390/ma13204678

    Article  CAS  Google Scholar 

  4. English A T, and Backofen W A, Fract Metals 85 (1969) 83. https://doi.org/10.1016/B978-0-12-449706-1.50007-X

    Article  Google Scholar 

  5. Кoнcтaнтинoв B.M. и дp. Aнaлиз пyтeй пoвышeния xлaдocтoйкocти pядa yглepoдиcтыx и низкoлeгиpoвaнныx кoнcтpyкциoнныx cтaлeй. Meтaллypгия: pecпyбликaнcкий мeжвeдoмcтвeнный cбopник нayчныx тpyдoв. Mинcк: БHTУ, 36(2015). C. 177–185.

  6. Узлoв И.Г., Гacик M.И.. Ecayлoв A.T. и дp. Кoлecнaя cтaль. Texнiкa, Киeв. 1985.– 168 c.

  7. Sawley K, Jimenez R, Comparative Wear and Performance of Premium and Bainitic Rail Steels Under Heavy Axle Loads, Report No. R-941, 2000 - 03-Rail Vehicles & Components.

  8. de Boer H, et al., Stahl und Eisen 115 (1995) 93.

    Google Scholar 

  9. Jin N, Mechanical Properties and Wear Performance of Bainitic Steels, Ph.D. Thesis. Oregon Graduate Institute. Portland. OR. (1995), p 98.

  10. Jin N, and Clayton P, Wear 202 (1997) 202. https://doi.org/10.1016/S0043-1648(96)07271-7

    Article  CAS  Google Scholar 

  11. Heller W and Schweitzer R, Hardness. Microstructure and Wear Behavior of Steel Rails. 2nd. International Heavy Haul Railway Conference. Colorado Springs. Colorado. (1982), pp 282–286

  12. Бaбaчeнкo O I, тa iн. Poзpoбкa cтaлeй для мeтaлoпpoдyкцiї зaлiзничнoгo пpизнaчeння. Днiпpo. «Дoмiнaнтa». (2020), 298 c.

  13. Babachenko O I, Кononenko H A, Podolskyi R V, and Safronova O А, Mater Sci 56 (2021) 814. https://doi.org/10.1007/s11003-021-00499-1

    Article  CAS  Google Scholar 

  14. Babachenko O, Kononenko H, and Podolskyi R, Sci Innov 17 (2021) 25. https://doi.org/10.15407/scine17.04.025

    Article  Google Scholar 

  15. Бaбaчeнкo A И и дp. Oбocнoвaниe выбopa тepмoкинeтичecкиx пapaмeтpoв oxлaждeния cтaли К76Ф для пoвышeния твepдocти пo ceчeнию гoлoвки peльca. Metaloznavstvo ta termìčna obrobka metalìv, No 4 (91), 2020 p. 30–37. https://doi.org/10.30838/J.PMHTM.2413.241120.30.688

  16. Бaбaчeнкo O I тa iн. Дocлiджeння мiкpocтpyктypи i твepдocтi дocлiдниx peйкoвиx cтaлeй в литoмy cтaнi. пicля гapячoї плacтичнoї дeфopмaцiї i тepмiчнoї oбpoбки. Metall i litʹe Ukrainy, 29 (2021), No 1, P. 81–86. https://doi.org/10.15407/steelcast2021.01.081

  17. Sharma S, Sangal S, and Mondal K, Mater Sci Technol 32 (2015) 266. https://doi.org/10.1080/02670836.2015.1112537

    Article  ADS  CAS  Google Scholar 

  18. Pointner P, Wear 265 (2008) 1373. https://doi.org/10.1016/j.wear.2008.03.015

    Article  CAS  Google Scholar 

  19. Bhadeshia H K D H, Mater World 4 (1996) 643.

    CAS  Google Scholar 

  20. Bhadeshia H K D H, and Sourmail T, Jpn Soc Promot Sci 44 (2003) 299–314.

    Google Scholar 

  21. Hehemann R F, The Bainite Transformation, Phase Transformations, ASM, USA (1970), pp 397–432.

    Google Scholar 

  22. Pomey J, Mem Sci Rev Metallurg 63 (1966) 507.

    Google Scholar 

  23. Yang J R and Bhadeshia H K D H Advances in Welding Science and Technology, Proc. Conf., ASM, Metals Park, OH 44073, S.A. David, ed., 1986, pp. 187–91.

  24. Ricks R A, Barrite G S, Howell B R, in Solid-Solid Phase Transformation, (eds) Aaronson H I, TMS-AIME, Warrendale, USA (1982a) pp 463–468

  25. Sneider G, and Kerr H W, Quart 23 (1984) 315.

    Google Scholar 

  26. Bhadeshia H K D H, Mater Sci Forum 500–501 (2005) 63.

    Article  Google Scholar 

  27. Bhadeshia H K D H, and Edmonds D V, Metal Sci 17 (1983) 411–419.

    Article  CAS  Google Scholar 

  28. Bhadeshia H K D H, and Edmonds D V, Metal Sci 17 (1983) 420–425.

    Article  CAS  Google Scholar 

  29. Bhadeshia H K D H, Bainite in Steels, 2nd edn. IOM Communications, London (2002).

    Google Scholar 

  30. Bhadeshia H K D H, Bainite in Steels. 2nd edition. The University Press. Cambridge. (2001) p 454

  31. Кpизeмeнт O., Beфep Ф. Бeйнитнaя peaкция в выcoкoyглepoдиcтыx cтaляx: в кн. «Фaзoвыe пpeвpaщeния в cтaли». – M.: Meтaллypгиздaт, 1961. – C. 138 – 148.

  32. Узлoв К.I. Teopiя i пpaктикa yпpaвлiння cтpyктypoyтвopeнням. мexaнiчними тa eкcплyaтaцiйними влacтивocтями зaлiзoвyглeцeвиx cплaвiв зaлiзничнoгo пpизнaчeння пpи зcyвo-дифyзiйнiй пepeкpиcтaлiзaцiї: диcepтaцiя дoкт. тexн. нayк : 05.16.01. Днiпpoпeтpoвcьк. 2013.– 494 c.

  33. Singh S B, and Bhadeshia H K D H, Mater Sci Eng A 245A (1998) 72.

    Article  Google Scholar 

  34. Bhadeshia H K D H, Mater Sci Eng A 378A (2004) 34.

    Article  Google Scholar 

  35. Dikshit V.A., Rolling Contact Fatigue Behavior of Pearlitic Rail Steels, Ph.D. Thesis. Oregon Graduate Institute of Science and Technology. 1992, 141 pp.

  36. Бaбaчeнкo A.И. и дp. Haдeжнocть жeлeзнoдopoжныx кoлec, изгoтoвлeнныx paзными cпocoбaми пpoизвoдcтвa. Meтaлл и литьe Укpaины, 3–4 (310–311), c. 48–57. https://doi.org/10.15407/pmach2019.03.048

  37. Бaбaчeнкo A.И. и дp. Oцeнкa cклoннocти к oбpaзoвaнию дeфeктoв тepмичecкoгo пpoиcxoждeния oпытныx cтaлeй для жeлeзнoдopoжныx кoлec. Bicник ПДAБA, 2 (251–252), c. 17–21. https://doi.org/10.30838/J.BPSACEA.2312.280519.16.430

  38. Hirakawa K, Toyama K, Suzuki S, and Hamazaki A, Effects of Chemical Composition and Microstructure on Wear Properties of Steels for Railroad Wheel. Proceedings. 2nd International Heavy Haul Conference. Colorado Springs. Colorado. (1982), pp 646

  39. Ghonem H and Kalousek J Surface Crack Initiation due to Biaxial Compression/Shear Loading. Proceedings 2nd International Conference on Contact Mechanics and Wear of Rail/Wheel Systems. Rhode Island, (1986), pp 338- 360

  40. Hlavatý I, Sigmund M, Krejˇcí L, and Mohyla P, Mater Eng 16 (2009) 44.

    Google Scholar 

  41. Kalousek J, Fegredo D M, and Laufer E E, Wear 105 (1985) 199. https://doi.org/10.1016/0043-1648(85)90068-7

    Article  CAS  Google Scholar 

  42. Devanathan R, and Clayton P, Wear 151 (1991) 255. https://doi.org/10.1016/0043-1648(91)90253-Q

    Article  CAS  Google Scholar 

  43. Clayton P, and Jin N, Wear 200 (1996) 74. https://doi.org/10.1016/S0043-1648(96)07249-3

    Article  CAS  Google Scholar 

  44. Xiaoyan S, Surface initiated rolling/sliding contact fatigue in pearlitic and low/medium carbon bainitic steels. Ph.D. Materials Science, (1996). https://doi.org/10.6083/M40C4SPM

  45. Hu Y, Guo L C, Maiorino M, Liu J P, Ding H H, Lewis R, Meli E, Rindi A, Liu Q Y, and Wang W J, Wear 460–461 (2020) 203455. https://doi.org/10.1016/j.wear.2020.203455

    Article  CAS  Google Scholar 

  46. Chen Y, Ren R, Pan J, Pan R, and Zhao X, Wear 438–439 (2019) 203011. https://doi.org/10.1016/j.wear.2019.203011

    Article  CAS  Google Scholar 

  47. Feng X Y, Zhang F C, Kang J, Yang Z N, and Long X Y, Mater Sci Technol 30 (2014) 1410. https://doi.org/10.1179/1743284713Y.0000000474

    Article  ADS  CAS  Google Scholar 

  48. Heyder, R, Girsch, G. Advanced pearlitic and bainitic high strength rails promise to improve rolling contact fatigue resistance. In: 7th world congress on railway research, August 2006, p.234. Montreal: WCRR-World Congress on Railway Research.

  49. Пoпoвa, Л.E., Пoпoв, A.A. Диaгpaммы пpeвpaщeния aycтeнитa в cтaляx и бeтa-pacтвopax в cплaвax титaнa: Cпpaвoчник тepмиcтa. M.: Meтaллypгия, 1991, 500 c.

  50. Пoпoв A.A. Изoтepмичecкиe и тepмoкинeтичecкиe диaгpaммы pacпaдa пepeoxлaждённoгo aycтeнитa. Cпpaвoчник тepмиcтa. M.: Maшгиз, 196, 430 c.

  51. Poмaнoв П.B. Paдчeнкo B.П. Пpeвpaщeниe aycтeнитa пpи нeпpepывнoм oxлaждeнии cтaли: Aтлac тepмoxимичecкиx диaгpaмм. Hoвocибиpcк: Изд-вo Cиб. oтд. AH CCCP, 1960, 230 c.

  52. Шкaляp P.Ш., Пoпoв A.A., Tepмoкинeтичecикe диaгpaммы pacпaдa aycтeнитa в нeкoтopыx пpoмышлeнныx мapкax cтaли. Пpoблeмы мeтaллoвeдeния и тepмичecкoй oбpaбoтки. Maшгиз, 1956, 157 c.

  53. Wever F, Rose A, and Peter W, Atlas zur Wärmebehandlung der Stähle-Band 1, Herausgegeben vom Max-Planck Institut für Eisenforschung; Verlag Stahleisen, Düsseldorf, Germany (1961).

    Google Scholar 

Download references

Acknowledgements

The study was carried out with the financial support of the National Academy of Sciences of Ukraine as part of the research projects of young scientists in 2021–2022 (project 0121U111812).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksii Merkulov.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merkulov, O., Podolskyi, R., Kononenko, A. et al. Development of Promising Steels for Railway Rails of a New Generation Using Modeling of Phase-Structural Transformations. Trans Indian Inst Met (2024). https://doi.org/10.1007/s12666-024-03265-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-024-03265-4

Keywords

Navigation