Skip to main content
Log in

Ultrasonic Welding of Glass Fiber-Reinforced Epoxy Composite Using Thermoplastic Nanocomposites Interlayer

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This study investigates the impact of CuO and TiO2 nanoparticles (NPs) in polyvinyl chloride interface of ultrasonically welded glass fiber-reinforced plastic. Welding pressure, duration and holding time were optimized for superior mechanical bonding. Response surface methodology was employed to develop a regression model incorporating welding time, NP weight percentage and thermal conductivity. The results indicated that using a 2 bar pressure, a holding time of 0.5 s, 1 wt.% CuO, and a welding time of 0.45 s, the nanocomposite (NC) demonstrated its maximum breaking load of 2039 N. When the welding time was reduced to 0.4 s for the NC with 1 wt.% TiO2, a slightly lower breaking load of 2036 N was observed demonstrating NC strength and resilience. Therefore, uniform dispersion of 1 wt.% NPs in the polymer matrix increased the welding tensile strength up to 70% of the neat composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mahato K K, Dutta K, and Chandra Ray B, Compos Part B Eng 166 (2019) 688. https://doi.org/10.1016/j.compositesb.2019.03.009

    Article  CAS  Google Scholar 

  2. Silva L R R, Marques E A S, and Da Silva L F M, Weld World 65 (2021) 2023. https://doi.org/10.1007/s40194-021-01143-x

    Article  Google Scholar 

  3. Deng S, Djukic L, Paton R, and Ye L, Compos Part A Appl Sci Manuf 68 (2015) 121. https://doi.org/10.1016/j.compositesa.2014.09.027

    Article  CAS  Google Scholar 

  4. Chitsaz Dehaghani R, Shokrieh M M, and Taheri-Behrooz F, Int J Adhes Adhes 85 (2018) 177.

    Article  CAS  Google Scholar 

  5. Lionetto F, Morillas M N, Pappada S, Buccoliero G, Villegas I F, and Maffezzoli A, Compos Part A Appl Sci Manuf 104 (2018) 32. https://doi.org/10.1016/j.compositesa.2017.10.021

    Article  CAS  Google Scholar 

  6. Tsiangou E, Kupski J, De Freitas S T, Benedicuts R, and Villegas I F, Compos Part A Appl Sci Manuf 144 (2021) 106334. https://doi.org/10.1016/j.compositesa.2021.106334

    Article  CAS  Google Scholar 

  7. Villegas I F, and Vizcaino Rubio P, Compos Part A Appl Sci Manuf 77 (2015) 172. https://doi.org/10.1016/j.compositesa.2015.07.002

    Article  CAS  Google Scholar 

  8. Nayak R K, Mahato K K, Routara B, and Chandra Ray B, J Appl Polym Sci 133 (2016) 1. https://doi.org/10.1002/app.44274

    Article  CAS  Google Scholar 

  9. Ayaz Sh, Ishaq M, Saeed Kh, Ahmed I, and Kh Khalil N, J Vinyl Addit Technol 23 (2017) 80. https://doi.org/10.1002/vnl.21488

    Article  CAS  Google Scholar 

  10. Mallakpour S, and Mansourzadeh S, Polym Bull 74 (2017) 3213. https://doi.org/10.1007/s00289-016-1891-0

    Article  CAS  Google Scholar 

  11. Zahid S, Nasir M A, and Nauman S, J Mech Sci Technol 33 (2019) 197. https://doi.org/10.1007/s12206-018-1219-0

    Article  Google Scholar 

  12. Alamgir M, Mallick A, Nayak G C, and Tiwari S K, J Mech Sci Technol 33 (2019) 4755. https://doi.org/10.1007/s12206-019-0916-7

    Article  Google Scholar 

  13. Li W, Frederick H, and Palardy G, Compos Part A Appl Sci Manuf 141 (2021) 106221. https://doi.org/10.1016/j.compositesa.2020.106221

    Article  CAS  Google Scholar 

  14. Zhi Q, Ma J M, Tan X R, Liu Z X, Tian Z G, and Wang P C, Weld World 65 (2021) 2047.

    Article  CAS  Google Scholar 

  15. Zhi Q, Tan X R, Lu L, Chen L Y, Li J C, and Liu Z X, Weld World 61 (2017) 1017.

    Article  CAS  Google Scholar 

  16. Mirzaahmadi S, Akbari D, Ahadzadeh I, and Hosseini-Yazdi S A, Trans Indian Inst Met 76 (2023) 3411. https://doi.org/10.1007/s12666-023-03012-1

    Article  CAS  Google Scholar 

  17. Shutilov V A, Fundamental Physics of Ultrasound, 1st edn. CRC Press, London (1988).

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Hosseini-Yazdi (University of Tabriz, Iran) for assistance in constructing NCs and for comments on the manuscript. This work was supported by the Tarbiat Modares University.

Author information

Authors and Affiliations

Authors

Contributions

DA contributed to conceptualization and supervision; SM contributed to formal analysis and investigation and writing—original draft preparation; and IA contributed to writing—review and editing and advisor.

Corresponding author

Correspondence to Davood Akbari.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaahmadi, S., Akbari, D. & Ahadzadeh, I. Ultrasonic Welding of Glass Fiber-Reinforced Epoxy Composite Using Thermoplastic Nanocomposites Interlayer. Trans Indian Inst Met 77, 1229–1238 (2024). https://doi.org/10.1007/s12666-023-03256-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03256-x

Keywords

Navigation