Skip to main content
Log in

Characteristics of the Instantaneous Kinetic Energy and Agitating Intensity Index for the Bath Flow under Various Bottom Regiment Configurations

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this study, the influence of the bottom mixing system on the balance characteristics of instantaneous kinetic energy was analyzed by devising the regiment configuration of the bottom nozzles. The results indicated that the stirring strength of the case with the regiment distribution is higher due to the synergy of gas streams. The time required for the kinetic energy to reach the equilibrium state is the shortest at a gas flowrate of 960 Nm3 h−1. It is suggested that the arrangement of bottom tuyeres located on the line of the same circumference should not be dispersed to reduce the convection effect and the dissipation of kinetic energy. To reflect the flow conditions inside the bath, the agitating intensity index was defined in the investigation. When the outer nozzles are located at a pitch circle diameter ratio of 0.7, the maximum index is 1.94 × 10−3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fabritius T M J, Luomala M J, Virtanen E O, Tenkku H, Fabritius T L J, Siibola T P, and Härkki J J, ISIJ Int 42 (2002) 861.

    Article  CAS  Google Scholar 

  2. Luomala M J, Fabritius T M J, and Härkki J J, ISIJ Int 44 (2004) 809.

    Article  CAS  Google Scholar 

  3. Wuppermann C, Giesselmann N, Rückert A, Pfeifer H, Odenthal H-J, and Hovestädt E, ISIJ Int 52 (2012) 1817.

    Article  CAS  Google Scholar 

  4. Kawabe Y, Uddin M A, Kato Y, Seok M O, and Lee S B, ISIJ Int 57 (2017) 296.

    Article  CAS  Google Scholar 

  5. Ballal N B, and Ghosh A, Metall Mater Trans B 12 (1981) 525.

    Article  ADS  Google Scholar 

  6. Paul S, and Ghosh D N, Metall Mater Trans B 17 (1986) 461.

    Article  CAS  ADS  Google Scholar 

  7. Li W, Zhu R, Dong K, Zhang J, Feng C, Han B, and Wu X, Metall Mater Trans B 51 (2020) 1060.

    Article  CAS  Google Scholar 

  8. Roth C, Peter M, Schindler M, and Koch K, Steel Res Int 66 (1995) 325.

    Article  CAS  Google Scholar 

  9. Stišovic T, and Koch K, Steel Res Int 73 (2002) 373.

    Article  Google Scholar 

  10. Zhong L, Wang X, Zhu Y, Chen B, Huamg B, and Ke J, Ironmak Steelmak 37 (2010) 578.

    Article  CAS  Google Scholar 

  11. Lekakh S N, and Robertson D G C, ISIJ Int 53 (2013) 622.

    Article  CAS  Google Scholar 

  12. Zhou X, Ersson M, Zhong L, and Jönsson P, ISIJ Int 54 (2014) 2255.

    Article  CAS  Google Scholar 

  13. Olivares O, Elias A, Sánchez R, Díaz-Cruz M, and Morales R D, Steel Res Int 73 (2002) 44.

    Article  CAS  Google Scholar 

  14. Cheng R, Zhang L, Yin Y, and Zhang J, Met Open Access Metall J 11 (2021) 369.

    CAS  Google Scholar 

  15. Quiyoom A, Golani R, Singh V, and Buwa V V, Chem Eng Sci 170 (2017) 777.

    Article  CAS  Google Scholar 

  16. Wei G, and Zhu R, wang Y. Dong K, Wu X, Liu R, Chen F, Ironmak Steelmak 45 (2018) 847.

    CAS  Google Scholar 

  17. Yao L, Zhu R, Dong K, Wei G, Zhao F, and Tang Y, Ironmak Steelmak 48 (2021) 180.

    Article  CAS  Google Scholar 

  18. Chu K, Chen H, Lai P, Wu H, Liu Y, Lin C, and Lu M, Metall Mater Trans B 47 (2016) 948.

    Article  CAS  Google Scholar 

  19. Li Y, Lou W, and Zhu M, Ironmak Steelmak 40 (2013) 505.

    Article  CAS  Google Scholar 

  20. Yang L, Liu L, Jiao X, and Tong P, J Iron Steel Res Int 21 (2014) 41.

    Article  Google Scholar 

  21. Singh V, Kumar J, Bhanu C, Ajmani S K, and Dash S K, ISIJ Int 47 (2007) 1605.

    Article  CAS  Google Scholar 

  22. Wu W, Yu H, Wang X, Li H, and Liu K, J Iron Steel Res Int 22 (2015) 80.

    Article  Google Scholar 

  23. Choudhary S K, and Ajmani S K, ISIJ Int 46 (2006) 1171.

    Article  CAS  Google Scholar 

  24. Lai Z, Xie Z, and Zhong L, ISIJ Int 48 (2008) 793.

    Article  CAS  Google Scholar 

  25. Sabah S, and Brooks G, Metall Mater Trans B 47 (2016) 458.

    Article  CAS  Google Scholar 

  26. Zhou X, Ersson M, Zhong L, and Jönsson P, Metall Mater Trans B 47 (2016) 434.

    Article  CAS  Google Scholar 

  27. Li M, Li Q, Kuang S, and Zou Z, Steel Res Int 87 (2016) 288.

    Article  CAS  Google Scholar 

  28. Hirt C W, and Nichols B D, J Comput Phys 39 (1981) 201.

    Article  ADS  Google Scholar 

  29. Launder B E, and Spalding D B, Mathematical Models of Turbulence, Academic Press, London (1972).

    Google Scholar 

  30. ANSYS Inc, Ansys 15.0 Manual, Canonsburg, (2013).

  31. Zhou X, Liu Y, Ni P, and Peng S, Steel Res Int 92 (2021) 334.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support by the National Key R&D Project of China (2021YFB3702000), the National Natural Science Foundation of China (NSFC)(U20A20272), the Key project of Handan Scientific Research Program (21122015004), the State Key Laboratory of Marine Equipment and Applications - University of science technology of Liaoning united fund (HGSKL-USTLN202101), the National Natural Science Foundation of China (Grant NO.NSFC52074151) and the Department of Science & Technology of Liaoning Province (Grant NO.2022JH2/101300079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Han.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Han, P., Yang, B. et al. Characteristics of the Instantaneous Kinetic Energy and Agitating Intensity Index for the Bath Flow under Various Bottom Regiment Configurations. Trans Indian Inst Met (2024). https://doi.org/10.1007/s12666-023-03248-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-023-03248-x

Keywords

Navigation