Skip to main content
Log in

Efficient Anticorrosion Coatings Based on Waste Tea Bags-Derived Nanocrystalline Cellulose-Incorporated Polyaniline Nanocomposites

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Corrosion is an age-old global issue that demands advanced protection solutions, among which the nanostructured electroactive coatings are getting special attention. Herein, we demonstrated the utilization of waste tea bags as a source for producing nanocrystalline cellulose (NCC) that was further incorporated into the polyaniline (PANI) matrix to synthesize PANI/NCC composites via in situ polymerization of aniline with the addition of NCC dispersed phase. Subsequently, various anticorrosion compositions based on epoxy resin containing different proportions of PANI/NCC were formulated and coated over mild steel substrate. Their corrosion inhibition performance was measured through Tafel polarization curves and electrochemical impedance profiles under saline environment (3.5% NaCl electrolyte). It was observed that the mild steel coated with epoxy having 1.5 wt% loading of PANI/NCC composite showed significantly high corrosion inhibition efficiency (99%), which is ascribed to the combined effect of barrier action of NCC to corrodents (water/oxygen) as well as ennoblization by PANI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Araoyinbo A O, Salleh M A A M, and Jusof M Z, in IOP Conference Series: Materials Science and Engineering 343 (2018), p 012012. https://doi.org/10.1088/1757-899X/343/1/012012

  2. Hajar H, Suriani M, Sabri M, Ghazali M, and Nik W B W, Biosci Biotechnol Res Asia 12 (2015) 71. https://doi.org/10.13005/bbra/2939

  3. Singh A A M M, Franco P A, and Binoj J S, Mater Today Proc 15 (2019) 84. https://doi.org/10.1016/j.matpr.2019.05.028

    Article  CAS  Google Scholar 

  4. Harun M H, Saion E, Kassim A, Yahya N, and Mahmud E, UCSI Acad J J Adv Sci Arts 2 (2007) 63.

    Google Scholar 

  5. Saini P, Fundamentals of conjugated polymer blends, copolymers and composites: synthesis, properties, and applications, 1st Edition, John Wiley & Sons, Hoboken (2015). https://doi.org/10.1002/9781119137160

  6. Saini P, Arora M, Gupta G, Gupta B K, Singh V N, and Choudhary V, Nanoscale 5 (2013) 4330. https://doi.org/10.1039/C3NR00634D

    Article  CAS  PubMed  Google Scholar 

  7. Saini P, and Arora M, J Mater Chem A 1 (2013) 8926. https://doi.org/10.1039/C3TA11086A

    Article  CAS  Google Scholar 

  8. Gong Q, Li Y, Liu X, Xia Z, and Yang Y, Carbohydr Polym 245 (2020) 116611. https://doi.org/10.1016/j.carbpol.2020.116611

    Article  CAS  PubMed  Google Scholar 

  9. Li P, Tan T C, and Lee J Y, Synth Met 88 (1997) 237. https://doi.org/10.1016/S0379-6779(97)03860-5

    Article  CAS  Google Scholar 

  10. Zhong L, Zhu H, Hu J, Xiao S, and Gan F, Electrochimica Acta 51 (2006) 5494. https://doi.org/10.1016/j.electacta.2006.02.029

    Article  CAS  Google Scholar 

  11. Saini P, Jalan R, and Dhawan S K, J Appl Polym Sci 108 (2008) 1437. https://doi.org/10.1002/app.27827

    Article  CAS  Google Scholar 

  12. Abaci S, and Nessark B, J Coat Technol Res 12 (2015) 107. https://doi.org/10.1007/s11998-014-9611-x

    Article  CAS  Google Scholar 

  13. Shaari A H, Ramli M M, Mohtar M N, Rahman N, and Ahmad A, Polymers 13 (2021) 1939. https://doi.org/10.3390/polym13121939

    Article  CAS  Google Scholar 

  14. Saini P, Choudhary V, Singh B P, Mathur R B, and Dhawan S K, Mater Chem Phys 113 (2009) 919. https://doi.org/10.1016/j.matchemphys.2008.08.065

    Article  CAS  Google Scholar 

  15. Saini P, and Choudhary V, J Mater Sci 48 (2013) 797. https://doi.org/10.1007/s10853-012-6797-0

    Article  CAS  Google Scholar 

  16. Hasanin M, Mwafy E A, and Youssef A M, J Bio- Tribo-Corros 7 (2021) 1. https://doi.org/10.1007/s40735-021-00573-w

    Article  Google Scholar 

  17. Vaghela C, Kulkarni M, Haram S, Karve M, and Aiyer R, IEEE Sens J 16 (2016) 4318. https://doi.org/10.1109/JSEN.2016.2541178

    Article  CAS  Google Scholar 

  18. Vickers N J, Curr Biol 27 (2017) R713. https://doi.org/10.1016/j.cub.2017.05.06

    Article  CAS  PubMed  Google Scholar 

  19. Le Hoang S, Vu C M, Pham L T, and Choi H J, Polym Bull 75 (2018) 2607. https://doi.org/10.1007/s00289-017-2162-4

    Article  CAS  Google Scholar 

  20. Yabuki A, Kanagaki M, Nishikawa C, Lee J H, and Fathona I W, Prog Org Coat 154 (2021) 106194. https://doi.org/10.1016/j.porgcoat.2021.106194

    Article  CAS  Google Scholar 

  21. Borsoi C, Zattera A J, and Ferreira C A, Appl Surf Sci 364 (2016) 124. https://doi.org/10.1016/j.apsusc.2015.12.140

    Article  CAS  Google Scholar 

  22. Borsoi C, Scienza L C, Zattera A J, and Ferreira C A, Mater Res 21 (2018) e20170269. https://doi.org/10.1590/1980-5373-MR-2017-0269

    Article  Google Scholar 

  23. Shahadat M, Khan M Z, Rupani P F, Embrandiri A, Sultana S, Ahammad S Z, Ali S W, and Sreekrishnan T R Adv Colloid Interface Sci 249 (2017) 2. https://doi.org/10.1016/j.cis.2017.08.006

  24. Raza M, and Abu-Jdayil B, Cellulose (2022) 1–38. https://doi.org/10.1007/s10570-021-04371-y

  25. Xiong C, Li B, Duan C, Dai L, Nie S, Qin C, Xu Y, and Ni Y, Chem Eng J 418 (2021) 129518. https://doi.org/10.1016/j.cej.2021.129518

    Article  CAS  Google Scholar 

  26. Gong J, Li J, Xu J, Xiang Z, and Mo L, RSC Adv 7 (2017) 33486. https://doi.org/10.1039/C7RA06222B

    Article  CAS  Google Scholar 

  27. Creus J, Mazille H, and Idrissi H, Surf Coat Technol 130 (2000) 224. https://doi.org/10.1016/S0257-8972(99)00659-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to the Director, CSIR-National Physical Laboratory and Principal Miranda House, for their support toward collaborative work Special thanks to CSIR-NPL for financial support through in-house project OLP230432. The authors are also grateful to Dr. Sandeep, Dr. G.A. Basheed, and Dr. Jai Tawale of CSIR-NPL for recording FTIR, XRD, and FESEM data, respectively. Neha and Rahul Saha would like to acknowledge the CSIR, whereas Anuj acknowledges UGC for the fellowship.

Funding

This work was funded by Council of Scientific and Industrial Research, India (Grant Nos. 31/001(0578)/2019-EMR-I, 31/001(0641)/2020-EMR-I), and University Grants Commission (Grant No. 16-6(Dec 2017)2018(NET/CSIR)).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anuushka Pal or Parveen Saini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neha, Saha, R., Anuj et al. Efficient Anticorrosion Coatings Based on Waste Tea Bags-Derived Nanocrystalline Cellulose-Incorporated Polyaniline Nanocomposites. Trans Indian Inst Met 77, 1373–1379 (2024). https://doi.org/10.1007/s12666-023-03240-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03240-5

Keywords

Navigation