Skip to main content
Log in

Effect of Cooling Rate on Microstructure, Shape Memory Effect and Mechanical Properties of Cu–13Al–5Fe High-Temperature Shape Memory Alloy Fabricated by Laser Powder Bed Fusion

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The cooling rate has a huge effect on the microstructure and properties of shape memory alloys. In this work, taking Cu–13Al–5Fe high-temperature shape memory alloy as an example, the effects of cooling rate on the microstructure, shape memory effect and mechanical properties were studied. The results show that the alloy has good properties in the water-cooled condition. When the alloy under water-cooling state is deformed at room-temperature, the recovery strain is as high as 4.72%, and the phase transition temperature exceeds 357 ℃. Moreover, the ratio of temperature to recovery strain is higher significantly than that of other reported shape memory alloys. This class of Cu–13Al–5Fe alloy may be used as high-temperature shape memory materials with high and wide working temperature range as high-sensitive driver or detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors are unable or have chosen not to specify which data has been used.

References

  1. Santosh S, Praveen R, and Sampath V, Trans Indian Inst Met 72 (2019) 1465. https://doi.org/10.1007/s12666-019-01591-6

    Article  CAS  Google Scholar 

  2. Ananchaperumal V, and Vedantam S, Trans Indian Inst Met 74 (2021) 2499. https://doi.org/10.1007/s12666-021-02283-w

    Article  CAS  Google Scholar 

  3. Priyadarshini B G, Aich S, and Chakraborty M, Metall Mater Trans A 42 (2011) 384. https://doi.org/10.1007/s11661-010-0497-7

    Article  CAS  Google Scholar 

  4. Majkic G, Chennoufi N, Chen Y C, and Salama K, Metall Mater Trans A 38 (2007) 2523. https://doi.org/10.1007/s11661-007-9307-2

    Article  CAS  Google Scholar 

  5. Karakoc O, Atili K C, Evirgen A, Pons J, and Santamarta R, Mater Sci Eng A Struct 794 (2020) 139857. https://doi.org/10.1016/j.msea.2020.139857

    Article  CAS  Google Scholar 

  6. Ramaiah K V, Saikrishna C N, and Bhaumik S K, J Alloys Compd 554 (2013) 319. https://doi.org/10.1016/j.jallcom.2012.11.165

    Article  CAS  Google Scholar 

  7. Rios O, Noebe R, Biles T, Garg A, and Palczer A, Physica A 5761 (2005) 376. https://doi.org/10.1117/12.599608

    Article  CAS  Google Scholar 

  8. Chang S H, Liao B S, and Kermanshahi M G, J Alloys Compd 847 (2020) 156560. https://doi.org/10.1016/j.jallcom.2020.156560

    Article  CAS  Google Scholar 

  9. Saud S N, Hamazah E, Abubakar T, and Rad H R B, J Therm Anal Calorim 119 (2015) 1273. https://doi.org/10.1007/s10973-014-465-6

    Article  CAS  Google Scholar 

  10. Chang S H, Liao B S, and Mozhgan G K, J Alloys Compd 847 (2020) 156560. https://doi.org/10.1016/j.jallcom.2020.156560

    Article  CAS  Google Scholar 

  11. Raju T N, and Sampath V, Trans Indian Inst Met 64 (2011) 165. https://doi.org/10.1007/s12666-011-0032-6

    Article  CAS  Google Scholar 

  12. Oliveira A B, Peixoto E B, Duque J G S, Silva L S, and Silva R A G, Materialia 16 (2021) 101101. https://doi.org/10.1016/J.MTLA.2021.101101

    Article  CAS  Google Scholar 

  13. Elst R, Humbeeck J V, and Delaey L, Mater Sci Technol Lond 4 (2013) 644. https://doi.org/10.1179/mst.1988.4.7.644

    Article  Google Scholar 

  14. Liu X X, Hu R, Luo X, Yang C Y, and Gao X Y, Mater Sci Eng A struct 853 (2022) 143744. https://doi.org/10.1016/J.MSEA.2022.143744

    Article  CAS  Google Scholar 

  15. Yang S Y, Su Y, Wang C P, and Liu X J, Mater Sci Eng B Adv 185 (2014) 67. https://doi.org/10.1016/j.mseb.2014.02.001

    Article  CAS  Google Scholar 

  16. Babacan N, Pilz S, Pauly S, Hufenbach J, and Gustmann T, Mater Sci Eng A struct 862 (2023) 144412. https://doi.org/10.1016/j.msea.2022.144412

    Article  CAS  Google Scholar 

  17. Yang S Y, Zhang F, Wu J L, Lu Y, and Shi Z, Mater Des 115 (2017) 17. https://doi.org/10.1016/j.matdes.2016.11.035

    Article  CAS  Google Scholar 

  18. Yang S Y, Hong S, Li M P, Qing X Y, and Guo L P, Sci China Technol Sci 64 (2021) 400. https://doi.org/10.1017/s11431-020-1617-x

    Article  CAS  Google Scholar 

  19. Chen S S, Chen X Q, Guo L P, Zheng S W, and Chen F, Vacuum 210 (2023) 111824. https://doi.org/10.1016/j.vacuum.2023.111824

    Article  CAS  Google Scholar 

  20. Guo L P, Zhang J P, Chen X Q, Zheng S W, and Yang S Y, Trans Nonferr Met Soc 33 (2022) 1452. https://doi.org/10.1016/S1003-6326(23)66195-3

    Article  Google Scholar 

  21. Yang S Y, Su Y, Wang C P, and Liu X J, Mater Sci Eng B Adv 185 (2014) 67. https://doi.org/10.1016/j.mseb.2014.02.001

    Article  CAS  Google Scholar 

  22. Feng Y, Liu B C, Wan X M, Liu Q W, and Lin X, J Alloys Compd 908 (2022) 164568. https://doi.org/10.1016/j.jallcom.2022.164568

    Article  CAS  Google Scholar 

  23. Li H, Meng X L, and Cai W, J Alloys Compd 824 (2022) 153941. https://doi.org/10.1016/j.jallcom.2020.153941

    Article  CAS  Google Scholar 

  24. Lu H Z, Liu L H, Yang C, Luo X, and Song C H, J Mater Sci Technol 101 (2022) 205. https://doi.org/10.1016/j.jmst.2021.06.019

    Article  CAS  Google Scholar 

  25. Acar E, Saedi S, Toker G P, Tobe H, and Karaca H E, Mater Res Bull 133 (2021) 111016. https://doi.org/10.1016/j.materresbull.2020.1111016

    Article  CAS  Google Scholar 

  26. Ramaiah K V, Saikrishna C N, Bhagyaraj J, and Bhaumik S K, Mater Charact 148 (2019) 345. https://doi.org/10.1016/j.matchar.2019.01.006

    Article  CAS  Google Scholar 

  27. Acar E, Toker G P, Kurkcu H, and Karaca H E, Intermetallics 111 (2019) 106518. https://doi.org/10.1016/j.intermet.2019.106518

    Article  CAS  Google Scholar 

  28. Peng H B, Zhang J B, Song L X, An X G, and Wang H, Mater Sci Eng A Struct 852 (2022) 143675. https://doi.org/10.1016/j.msea.2022.143675

    Article  CAS  Google Scholar 

  29. Park K W, Choi E, and Kim W J, Mater Sci Eng A Struct 856 (2022) 143947. https://doi.org/10.1016/j.msea.2022.143947

    Article  CAS  Google Scholar 

  30. Khodaverdi H, Mohri M, Ghorabaei A S, Ghafoori E, and Nili-Ahmadabadi M, Mater Charact 195 (2023) 112486. https://doi.org/10.1016/j.matchar.2022.112486

    Article  CAS  Google Scholar 

  31. Koohdar H, Roshanzadeh F, and Jafarian H R, J Mater Res Technol 21 (2022) 4537. https://doi.org/10.1016/j.jmrt.2022.11.070

    Article  CAS  Google Scholar 

  32. Zheng X H, Sui J H, Zhang X, Tian X H, and Cai W, J Alloys Compd 539 (2012) 144. https://doi.org/10.1016/j.jallcom.2012.06.021

    Article  CAS  Google Scholar 

  33. Zheng X H, Sui J H, Zhang X, Yang Z Y, and Wang H B, Scr Mater 68 (2013) 1008. https://doi.org/10.1016/j.scriptamat.2013.03.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 51971166).

Author information

Authors and Affiliations

Authors

Contributions

YG: Writing-original draft, data curation, formal analysis, conceptualization, methodology. ZJ: writing-review & editing, conceptualization, funding acquisition, supervision, methodology, formal analysis.

Corresponding author

Correspondence to Zengyun Jian.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Jian, Z. Effect of Cooling Rate on Microstructure, Shape Memory Effect and Mechanical Properties of Cu–13Al–5Fe High-Temperature Shape Memory Alloy Fabricated by Laser Powder Bed Fusion. Trans Indian Inst Met 77, 1173–1179 (2024). https://doi.org/10.1007/s12666-023-03236-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03236-1

Keywords

Navigation